

Technical Data

\section*{| MODEL | POWER | $Q\left(m^{\prime} / \mathrm{h}\right)$ | 0 | 0.6 | 0.9 | 1.2 | 1.8 | 2.4 | 3.0 | 3.6 | 4.2 | 4.5 | 4.8 | 5.4 | 6.0 | 6.6 | 7.2 | 7.8 | 8.4 | 9.0 | 9.6 | 10.8 | 11.7 | 12.6 |
| :--- |
| incle | |}

 \begin{tabular}{|l|l|l|l|}
\hline ACm25 \& - \& \& \\
\hline ACm \& \& \& \\
\hline

17 \& 16.5 \& 16.2 \& 16 \& 15.5 \& 14.5 \& 3.5 \& 12.5 \& 10.5 \& 9.5 \& 8 \& - \\
\hline 23 \& 21.5 \& 21 \& 21 \& 20.5 \& 19.5 \& 18 \& 17 \& 15.5 \& 14.5 \& 14 \& 12 \\
\hline 27 \& 26.5 \& 26.2 \& 26 \& 25 \& 24.5 \& 22.5 \& 20 \& 17 \& 15.5 \& 14 \& 10 \\
\hline \& 3 \& 2 \& \& \& 22 \& \& 25 \& 27 \& \& \& \&
\end{tabular}

H
(m)
:---

| 55 | 54.5 | 53 | 53.5 | 53 | 52.5 | 51.5 | 50.5 | 49.5 | 48 | 48.5 | 47 | 45.5 | 43.5 | 40 | 36.5 | 32.5 | 28 | - | - | - | |
| :--- |
| 34.5 | 34.3 | 34.2 | 34.1 | 34 | 33.8 | 33.5 | 33 | 32.5 | 323 | 32 | 31 | 30.5 | 29.5 | 28.5 | 275 | 265 | 25 | | | | |

Model	DN1	DN2	$\stackrel{L}{(\mathrm{~mm})}$	$\underset{(\mathrm{mm})}{W}$	$\underset{(\mathrm{mm})}{\mathrm{H}}$	$\underset{(\mathrm{mm})}{L_{1}}$	$\underset{(\mathrm{mm})}{\mathrm{w}_{1}}$	$\underset{(\mathrm{mm})}{\mathrm{H}_{1}}$
ACm25	${ }^{1 "}$	$1{ }^{1 \prime}$	270	157	216	42	122	90
ACm37			270	157	216	42	122	90
ACm60			298	190	240	44	160	90
ACm75			298	190	240	44	160	100
ACm110	$1^{1 / 4} 4^{\prime \prime}$	$1{ }^{10}$	359	206	263	50	178	112
ACm150			360	240	286	51	207	115
AC 220			360	240	286	51	207	115
ACm100	11/2"	1 "	356	206	265	48.5	178	112
ACm150L			356	206	265	48.5	178	112

Application

- Can be used to transfer clean water or other liquids similar to water in physical and chemical properties
- Suitable for industrial use and urban water supply, pressure boosting for high buildings and fire fighting, garden irrigation, long-distance water transfer, heating ventilation and air controlling, circulation and
pressure boosting for cold and hot water, and supporting equipmentetc.

Pump

- Cast iron pump body and support under special anti-rust treatment
- AISI 304 shaft
- Max. liquid temperature: $+40^{\circ} \mathrm{C}$
- Max. suction: +8 m

Motor

- C\&U bearing
- Motor with copper winding
- Built-in thermal protector for single phase motor
- Insulation class: F
- Protection class: IPX4 . Max. ambient temperature: $+40^{\circ} \mathrm{C}$

Identification Codes
A C m 110 (L)

Package Information

Model	$\underset{(\mathrm{GWs})}{(\mathrm{KW})}$	(mm)	$\underset{(\mathrm{mm})}{\mathrm{w}}$	$\underset{(\mathrm{mm})}{\mathrm{H}}$	$\begin{gathered} \text { Quantity } \\ \text { (PCS/20 TEU) } \end{gathered}$
ACm25	7.9	290	185	239	2124
ACm37	8.4	290	185	239	2124
ACm60	11.5	333	215	260	1384
ACm75	13.4	333	215	260	1384
ACm110	18.45	383	233	287	987
ACm150	22.8	425	265	310	770
AC220	23.3	425	265	310	770
ACm110L	18.4	383	233	287	987

ACm niongin
Centrifugal Pump

Technical Data

model		Power		$\frac{Q\left(\mathrm{~m}^{\prime} / \mathrm{h}\right)}{Q(\\| \mathrm{min})}$	0	$\begin{array}{r} 6 \\ \\ \hline 100 \\ \hline \end{array}$	$\frac{9}{150}$	$\begin{array}{\|l\|} \hline 12 \\ \hline 200 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 15 \\ \hline 250 \\ \hline \end{array}$	$\begin{array}{r} \frac{18}{300} \\ \hline 30 \end{array}$	$\begin{aligned} & 24 \\ & \hline 400 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 27 \\ \hline 450 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 30 \\ \hline 500 \\ \hline \end{array}$	$\begin{aligned} & \frac{36}{600} \\ & \hline 60 \end{aligned}$	$\begin{aligned} & 42 \\ & \hline 700 \\ & \hline \end{aligned}$	$\begin{aligned} & 48 \\ & \hline 800 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 54 \\ \hline 900 \\ \hline \end{array}$
Single Phase	Three Phase	kw	HP														
ACm220CH2	AC220CH2	2.2	3	$\underset{(\mathrm{m})}{\mathrm{H}}$	31	30	29.5	28.5	27.5	26	21.5	18.5	-		.		-
ACm300CH2	AC300CH2	3	4		38	37.	37	36	34.5	33	28.5	25.5	-	-	-	-	-
ACm400CH2	AC400CH2	4	5.5		49	48	47	46	45	43.5	39.5	37	-	-	-	-	
----	AC550CH2	5.5	7.5		54	52.5	52	51	50	49	46	44	42	-		-	-
ACm30002	AC300C2	3	4		30	29.5	29	28.5	28	27	25	23.5	22	19.5	15.5	11.5	\cdot
ACm400C2	AC400C2	4	5		39	38.5	38	37.5	37	36	34	32.5	31	28	24	18.5	13
---	AC550C2	5.5	7.5		46.5	45.5	45	44.5	43.5	42.5	40	38.5	37	33	28	22	15
---	AC750C2	7.5	10		56.5	55	55	54.5	53.5	52.5	50	48.5	46.5	42	36.5	30.5	20
---	AC750C4	7.5	10		52.5	52	52	51.5	51	50.5	48	46.5	44.5	40	35.5	30.5	24

Application

- Can be used to transfer clean water or other liquids similar to water in physical and chemical properties
- Suitable for industrial use and urban water supply, pressure boosting for high buildings and fire fighting, garden irrigation, long-distance water transfer, heating ventilation and air control ling, circulation and

Pump

- Cast iron pump body and support under special anti-rust treatment
- AISI 304 shaft
- Max. liquid temperature: $+40^{\circ} \mathrm{C}$
- Max. suction: +8 m

Motor

- C\&U bearing
- Motor with copper winding
- Insulation class: F
- Max. ambient temperature: $+40^{\circ} \mathrm{C}$

Identification Codes
$\mathrm{ACm220} \mathrm{C}(\mathrm{H}) 2$

Dimension

Model	DN1	DN2	$\frac{(\mathrm{m}}{(\mathrm{m})}$	$\underset{(\mathrm{mm})}{\mathrm{w}}$	$\underset{(\mathrm{mm})}{\mathrm{H}}$	$\underset{(m m)}{L_{2}}$	$\underset{(\mathrm{mm})}{\mathrm{w}_{1}}$	$\underset{(\mathrm{m}}{(\mathrm{m})}$
ACm220CH2	$2^{\prime \prime}$	$2 "$	444	255	315	65	186	132
ACm300CH2			444	255	315	65	186	132
ACm400CH2			496.5	280	326	70	195	136
AC550CH2			496.5	280	326	70	195	136
ACm300C2			444	255	315	65	186	132
ACm400C2			496.5	280	326	70	195	136
AC550C2			496.5	280	326	70	195	136
AC750C2			515	290	360	85	216	150
AC750C4	$4{ }^{4}$	$3^{3 \prime}$	525	290	360	95	216	150

Application

- Can be used to transfer clean water or other liquids similar to water in physical and chemical properties
- Suitable for industrial use and urban water supply, pressure boosting for high buildings and fire fighting, garden irrigation, long-distance
water transfer heating ventilation and air controlling, circulation and water transfer, heating ventilation and air controlling, circulation and
pressure boosting for cold and hot water, and supporting equipment
pressure boosting for cold and hot water, and supporting equipment

Pump

Cast iron pump body and support under special anti-rust treatment

- AISI 304 shaft
- Max. liquid temperature: $+40^{\circ} \mathrm{C}$
- Max. suction: +8 m

Motor

- C\&U bearin

Motor with copper winding
Built-in thermal protector for single phase motor

- Insulation class: F
- Protection class: IPX4

Identification Codes

Inlet Diameter (")
Features
Power ($\times 10 \mathrm{~W}$)
Single Phase Motor
Omitted for three-phase moto)
Centrifugal Pump
LEO Product Style

Technical Data

model		POWER		Q (m/h)	0	6	9	12	15	18	21	24	30
Single Phase	Three Phase	kw	HP	Q (Umin)	0	100	150	200	250	300	350	400	500
ACm60B2	AC60B2	0.6	0.8	$\underset{(\mathrm{m})}{\mathrm{H}}$	12.5	12	11.7	11	10.2	9.2	8	6.5	-
ACm75B2	AC75B2	0.75	1		14	13.7	13.5	13	12.3	11.2	9.9	8.5	5.5
ACM110B2	AC11082	1.1	1.5		19.5	19.2	19	18.5	17.7	16.5	15	13	8.5
ACm150B2	AC150B2	1.5	2		22	21.5	21	20.5	19.5	18.3	16.5	14.5	9.5

Dimension

Model	N	DN2	$\left(\frac{L}{(m)}\right)$	$\underset{(\mathrm{mm})}{\mathrm{w})}$	$\underset{(\mathrm{mm})}{\mathrm{H}}$	$\underset{(\mathrm{mm})}{\mathrm{L}_{1}}$	$\underset{(\mathrm{mm})}{\mathrm{L}_{2}}$	$\underset{(m m)}{w_{i}}$	$\underset{(\mathrm{mm})}{\mathrm{H}_{1}}$
Cm60B2	$2^{\prime \prime}$	$2 "$	331	195	242	62.5	4	156	100
ACm75B2	$2 "$	$2 "$	331	195	242	62.5	4	156	100
Cm11082	$2{ }^{\prime \prime}$	$2{ }^{\prime \prime}$	378	206	263	59	3.5	166	112
Cm150	$2^{\prime \prime}$	$2^{\prime \prime}$	378	20	263	59	3.5	166	

Hydraulic Performance Curves

Materials Table

$\stackrel{4}{\mathbb{E}}$

ACm nion sin
Centrifugal Pump

Application

- Can be used to transfer clean water or other liquids similar to water in
physical and chemical properties
- Suitable for industrial use and urban water supply, pressure boosting for high buildings and fire fighting, garden irrigation, long-distance water transfer, heating ventilation and air controlling, circulation and
pressure boosting for cold and hot water, and supporting equipment etc.

Pump
Cast iron pump body and support under special anti-rust treatment

- AISI 304 shaft
- Max. liquid temperature: $+40^{\circ}$
- Max. suction: +8 r

Motor

- C\&U bearing
- Motor with copper windin

Built-in thermal protector for single phase motor ($\leq 1.5 \mathrm{~kW})$

- Insulation class: F
- Max. ambient temperature: $+40^{\circ} \mathrm{C}$

Identification Codes

Technical Data

MODEL		Power		Q Q (mim)	\bigcirc	12	18	24	30	36	42	48	54	60	66	71
Single Phase	Three Phase	kw	HP	Q (umin)	0	200	300	400	500	600	700	800	900	1000	1100	1200
АСт110B3	AC110B3	1.1	1.5	$\underset{(\mathrm{m}}{\mathrm{H}}$	12.5	12.5	12.1	11.5	10.5	9.5	8.4	7.1	5.5	-	.	.
ACm11084	AC11084	1.1	1.5		12.5	12.5	12.1	11.5	10.5	9.5	8.4	7.1	5.5	-	.	.
ACm150B3	AC150B3	1.5	2		14.5	14.3	14	13.5	12.8	12	11.2	9.9	8.4	6	-	-
ACm15084	AC15084	1.5	2		14.5	14.3	14	13.5	12.8	12	11.2	9.9	8.4	6	-	-
ACm220B3	AC22083	2.2	3		17.5	17.3	17.1	16.5	16	15.2	14.2	13.2	11.7	10	7.2	-
ACm22084	AC22084	2.2	3		17.5	17.3	17.1	16.5	16	15.2	14.2	13.2	11.7	10	7.2	\checkmark
ACm30083	АСзоов3	3	4		20	19.8	19.6	19.5	19	18.3	17.5	16.2	14.6	13	11.5	10
ACm30084	AC300B4	3	4		20	19.8	19.6	19.5	19	18.3	17.5	16.2	14.6	13	11.5	10

Dimension

Model	DN1	DN2	$\frac{\mathrm{L}}{(\mathrm{~m})}$	$\underset{(\mathrm{mm})}{\mathrm{w}}$	$\stackrel{(\mathrm{mm})}{(\mathrm{mm})}$	$\underset{(\mathrm{mm})}{L_{1}}$	$\underset{(\mathrm{mm})}{\mathrm{m}_{1}}$	$\underset{(\mathrm{mm})}{\mathrm{H}_{1}}$
ACm110B3	3"	$3^{\prime \prime}$	386	230	295	68	180	120
ACm11084	${ }^{4}$	4^{4}	393	230	295	75	180	120
m15083	${ }^{3 \prime}$	${ }^{3 \prime}$	386	230	295	68	180	120
ACm15084	$4{ }^{4}$	$4{ }^{4}$	393	230	295	75	180	120
ACm220B3	$3{ }^{\prime \prime}$	$3^{\prime \prime}$	453	230	295	68	180	120
ACm220	$4{ }^{4}$	$4{ }^{4}$	460	230	295	75	180	120
ACm300B3	3"	$3^{\prime \prime}$	453	230	295	68	180	120
ACm30084	$4{ }^{4}$	$4^{4 \prime}$	460	230	295	75	180	120

Hydraulic Performance Curves

Package Information

Model	$\underset{\left(\mathrm{K}_{\mathrm{cs}} \mathrm{~s}\right)}{ }$	$\frac{\mathrm{L}}{(\mathrm{~mm})}$	$\underset{(\mathrm{mm})}{\mathbf{w}}$	$\underset{(\mathrm{mm})}{\mathrm{H}}$	$\begin{gathered} \text { Quantity } \\ \text { (PCS/20 TEU) } \end{gathered}$
ACm110B3	26.3	433	255	332	684
ACm11084	29.5	433	255	332	675
ACm150B3	27.2	433	255	332	684
ACm15084	30.4	433	255	332	655
ACm220B3	34.8	522	288	331	510
ACm22084	38	522	288	331	496
ACm300B3	37.3	522	288	331	506
ACm30084	40.5	522	288	331	467

Application

Can be used to transfer clean water or other liquids similar to water in physical and chemical properties

- Suitable for industrial use and urban water supply, pressure boosting
for high buildings and fire fighting garden irrigation for high buildings and fire fighting, garden irrigation, long-distance
water transfer, heating ventilation and air controlling circulation and pressure boosting for cold and hot water, and supporting equipment etc.

Pump

Cast iron pump body and support under special anti-rust treatment
AISI 304 shaft

- Max. liquid temperature: $+40^{\circ}$

Max. suction: +8 m

Motor

- C\&U bearing

Motor with copper winding
Built-in thermal protector for single phase motor ($\leq 1.5 \mathrm{~kW}$)
Insulation class: F
Protection class: IPX4

- Protection class: IPX4 Max. ambient temperature: $40^{\circ} \mathrm{C}$

Identification Codes

Technical Data

model		POWER		$Q\left(m^{\prime \prime} /{ }^{\text {a }}\right.$	0	12	18	24	30	${ }^{36}$	42	48	54	60	${ }^{6}$	72	84	${ }^{96}$
Single Phase	Three Phase	kw	${ }_{\text {HP }}$	Q (Umin)	0	200	300	400	500	600	700	800	900	1000	1100	1200	1400	1600
ACm110BF2	AC108F2	1.1	1.5	$\mathrm{H}(\mathrm{m})$	19.5	18.5	16.5	13	8.5	-	-	-	-	-	-	-	-	-
ACm110BF3	AC10BF3	1.1	1.5		12.5	12.5	21.1	11.5	10.5	9.5	8.4	7.1	5.5	-	-	-	-	-
ACm1508F2	AC150BF2	1.5	2		22	20.5	18.3	14.5	9.5	-	-		-	-	-	-	-	-
ACm1508F3	AC150BF3	1.5	2		14.5	14.3	14	13.5	12.8	12	11.2	9.9	8.4	6	-	.	-	-
ACm2208F3	AC220BF3	22	3		17.5	17.3	17.1	16.5	16	15.2	14.2	14.2	11.7	10	7.2	\cdot	-	-
ACm4008F4	AC400BF4	4	5.5		16.5	-		16	15.8	15.5	15.3	15.3	15	14.7	14.4	14	13.2	12.1

Dimension

Model	DN1	DN2	$\left\lvert\,\left(\frac{\mathrm{mm})}{\mathrm{L})}\right.\right.$	$\underset{(\mathrm{mm})}{\mathrm{w}}$	$\underset{(\mathrm{mm})}{\mathrm{H})}$	$\stackrel{L}{4}_{(\mathrm{mm})}^{L_{1}}$	$\underset{(\mathrm{mm})}{\mathbf{w}_{1}}$	$\underset{(\mathrm{mm})}{\mathbf{H}_{4}}$	$\stackrel{\mathrm{D}}{(\mathrm{~m})})^{2}$
ACm110BF2	$2{ }^{\prime \prime}$	$2{ }^{\prime \prime}$	392	206	270	64.5	166	112	10
ACm110BF3	$3^{\prime \prime}$	${ }^{\prime \prime}$	403	230	300	86	180	120	12
ACm150BF2	$2{ }^{\prime \prime}$	$2^{\prime \prime}$	392	206	270	64.5	166	112	10
ACm150BF3	$3^{\prime \prime}$	$3^{\prime \prime}$	403	230	300	86	180	120	12
ACm2208F3	$3{ }^{\prime \prime}$	$3^{\prime \prime}$	471	230	300	86	180	120	12
ACm400BF4	$4^{\prime \prime}$	$4{ }^{4}$	593	281.5	398	120.5	206	160	16

Hydraulic Performance Curves

Package Information

Model	$\begin{gathered} \mathrm{c}_{(\mathrm{Kg})} \end{gathered}$	$\left(\frac{\mathrm{mm}}{}\right.$	$\underset{(\mathrm{mm})}{\mathrm{w}}$	$\underset{(\mathrm{mm})}{\mathrm{H}}$	$\begin{aligned} & \text { Quantity } \\ & \text { (PCSI2OTEU) } \end{aligned}$
ACm110BF2	22.2	414	230	300	900
ACm150BF2	24	414	230	300	833
ACm110BF3	31.5	433	255	332	634
ACm150BF3	32.5	433	255	332	615
ACm2208F3	40	522	288	332	500
ACm400BF4	72.8	658	330	457	204

XGm
Centrifugal Pump

Application

- Can be used to transfer clean water or other liquids similar to water in physical and chemical properties
Suitable for industrial use and urban water supply, pressure boosting for high buildings and fire fighting, garden irrigation, long-distance water transfer, heating ventilation and air controlling, circulation and pressur boosting for cold and hot water, and supporting equipment, etc.

Pump

Cast iron pump body and support under special anti-rust treatment
AISI 304 shaft

- Max. liquid temperature: $+40^{\circ} \mathrm{C}$

Motor

- C\&U bearing
- Motor with copper winding

Built-in thermal protector for single phase motor

- Insulation class: F
- Protection class: IPX4

Identification Codes
XG m/1 A Semi-open Impeller Single Phase Motor
(Omitted for three-p
Centrifual Centrifugal Pump
\qquad

Hydraulic Performance Curves

Dimension

Model	DN1	DN2	$\left(\frac{\mathrm{mm}}{\mathrm{~L}}\right.$	$\stackrel{w}{(m \mathrm{~m})}$	$\underset{(\mathrm{mm})}{\mathrm{H}}$	$\left(\begin{array}{ll} (\mathrm{mm}) \end{array}\right.$	$\left(\frac{\mathrm{L}_{2}}{(\mathrm{~mm})}\right.$	$\underset{(\underline{w})}{\substack{(m)}}$	$\begin{gathered} \mathrm{H} 1 \\ (\mathrm{~mm}) \end{gathered}$
xGm/1A	11/2"	$11 / 2^{\prime \prime}$	295	191	235	44	48	160	96.5
XGm									

Package Information

Model	$\underset{(\mathrm{CLS})}{(\mathrm{KW})}$	(mm)	$\underset{(\mathrm{mm})}{\mathbf{w}}$	$\underset{(\mathrm{mm})}{\mathrm{H}}$	$\begin{aligned} & \text { Quantity } \\ & \text { (PCS/20 TEU } \end{aligned}$
XGm/1A	13	325	242	265	1512
XGm/1B	11.5	325	242	265	1512

