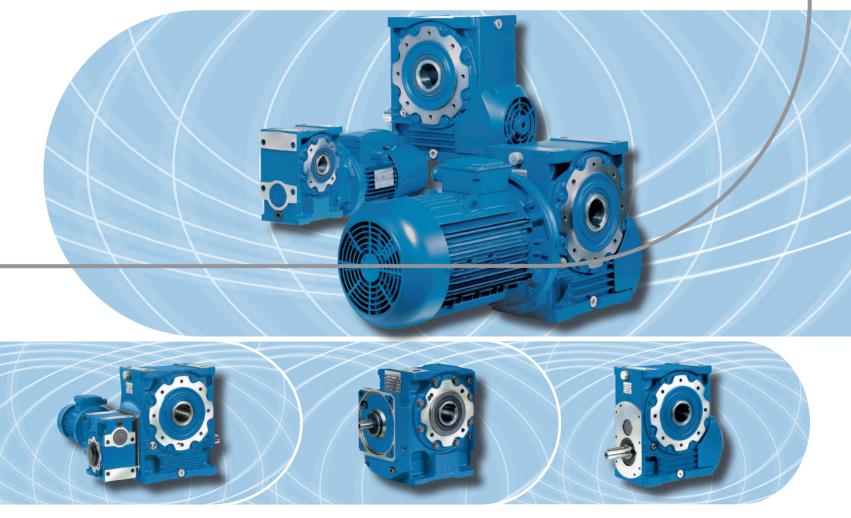


Products Media No. 4005



A04

Worm gear reducers and gearmotors

North America Issue

Edition October 2011

Index

1 -	Symbols	2	9 - Manufacturing programme (gearmotors)	24
2 -	Specifications	5	 Designs, dimensions, mounting positions and oil quantities 	42
3 -	Designation	9	11 - Combined gear reducer	
4 -	Thermal power Pt [hp]	10	and gearmotor units	47
5 -	Service factor <i>f</i> s	10	 12 - Radial loads F_{r1} [Ib] on high speed shaft end OHL 	50
6 -	Selection	11	 13 - Radial loads F_{r2} [lb] on low speed shaft end OHL 	50
7 -	Nominal power and torques (gear reducers)	13	14 - Structural and operational details	51
8 -			15 - Installation and maintenance	56
0 -		20	16 - Accessories and non-standard designs	59

Further technical information

In the event that you require further technical information regarding any of the under mentioned subjects:

any of the under mentioned subjects:
shaft mounting arrangements;
oversized hollow low speed shaft;
square flange for servomotors;
shaft-mounting arrangements;
fan cooling;
bearings lubrication pump;
bi-metal type thermostat;
hollow low speed shaft washer;
hollow low speed shaft protection;
design for agitators, aerators, fans;
design for extruders;
please refer to our detailed product catalogues available by contacting Rossi.

1 - Symbols

L _{WA} η Ζ _α J ₀ J ₀ J M _{h1} M ₂ M _{h2}	[dB(A)] [dB(A)] [start/h] [start/h] [lb in] [lb in] [lb in]	sound power level; mean sound pressure level; efficiency of the gear reducer; frequency of starting; no-load starting frequency; moment of inertia (of mass) of the motor; external moment of inertia (of mass) (gear reducers, couplings, trasmission, gear driven machine) referred to motor shaft; nominal torque of motor output torque due to the motor's rated power; nominal output torque of gear reducer at speed <i>n_i</i> ;	F_{r_1} F_{r_2} F_{sx} n_{r_1} P_{r_2} $P_{r_$	[lb] [lb] [rpm] [rpm] [rpm] [hp] [hp] [hp] [hp] [hp] [s] [s] [s]	radial load on high speed shaft end; radial load on low speed shaft end; axial load on low speed shaft end; input speed; output speed; nominal output speed; rated motor power; output power of gear reducer; nominal output power of gear reducer; thermal power; nominal thermal power transmission ratio; nominal transmission ratio starting time; braking time;
Ms Mi	[Ib in] [Ib in]	starting torque of motor, with direct on-line start braking torque setting of the motor;	φa, of	[rad] [rad]	revolution of motor shaft; revolution of motor shaft;
IVI	[ID II]	braking lorque setting of the motor,	φt,	[iau]	revolution of motor shall,

32 ... 81

Worm gear reducers

100 ... 250

100 ... 250

100 ... 126

R V with worm gear pair

R IV with 1 cylindrical gear pair plus worm

Motoriduttori a vite - Worm gearmotors

32 ... 81

MR V with worm gear pair

MR IV with 1 cylindrical gear pair plus worm

40 ... 81

MR 2IV with 2 cylindrical gear pairs plus worm

Combined gear reducer and gearmotors units

R V + R V

RV+MRV

MR V + R 2I, 3I

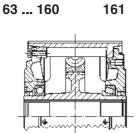
MR V + MR 2I, 3I

MR IV + R 2I, 3I

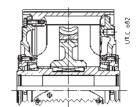
MR IV + MR 2I, 3I

6

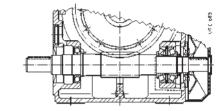
RV+MRIV

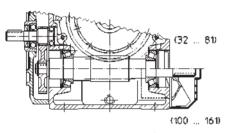


Gear reducers and gearmotors (worm wheel)

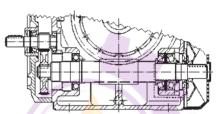


Gear reducers (worm)


Gearmotors (worm)

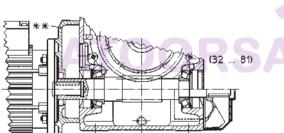


200, 250

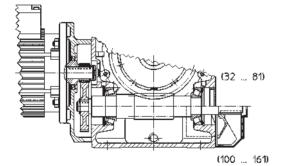


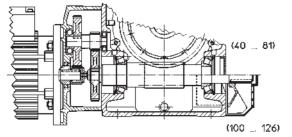
32* ... 161

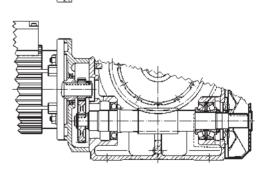
32* ... 161


(32 . 81)

(100 ... 161)




200, 250


蠹

(100 ... 161)

* Size 32: double row angular contact ball bearing plus ball bearing. ** For MR V 32, 40 with motor size 63 and 71, MR V 50 with motor size 71 and 80, MR V 63 ... 81 with motor 80 and 90 motor flange is usually integral with casing.

Universal mounting having feet integral with casing on 3 faces (sizes 32 .. 81) or on 2 faces (sizes 100 ... 250) and B14 flange on 2 faces. Design and strength of the casing permit interesting shaft mounting solutions

Thickened size and performance gradation (some sequential sizes are obtained with the same casing and many components in common)

High, reliable and tested performances (Ni bronze); optimization of worm gear pair performances (ZI involute profile and adequately conjugate worm wheel profile)

Compactness, standardized dimensions and compliance with standards

IEC standardized motor

Rigid and precise cast iron monolithic casing

Generous internal space between train of gears and casing allowing: - high oil capacity:

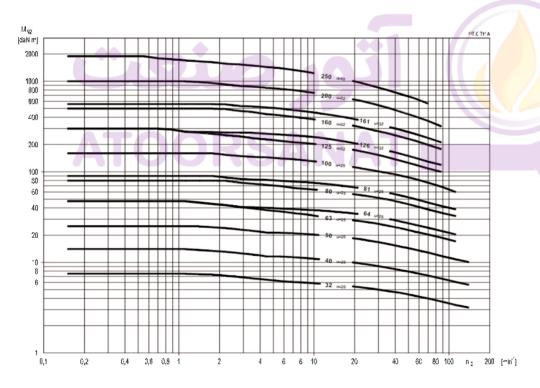
- lower oil pollution;
- greater duration of worm wheel and worm bearings;
- lower running temperature.

Possibility of fitting particularly powerful motors and transmitting high nominal and maximum torques

Improved and up-graded modular construction both for component parts and assembled product which ensures manufacturing and product management flexibility

High manufacturing quality standard

Possibility of obtaining multiple drives and at synchronous speed


Wide design and acccessory availability: shaft-mounting arrangements, mixed keying systems with key and locking elements (rings for sizes 32 ... 50, bush for sizes 63 ... 250), square flanges for servomotors and hub clamp, reduced backlash, etc.

32 ... 81

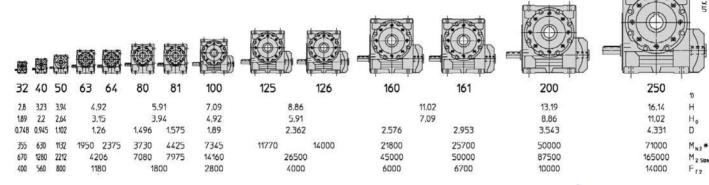
100 ... 250

Reduced maintenance

A combination of modern concepts, analytical calculations carried out on **each single part**, use of the very latest machine tools, plus systematic checks on materials, assembling and workmanship, gives this series of gear reducers **high efficiency**, running **precision**, **regular** motion and **noiselessness**, **constant** performances, **life and reliability**, strength and overload withstanding and suitability for **heaviest applications**, wide size and ratio range, excellent service - **the advantages typically associated with high quality worm gear reducers produced in large series.**

a - Gear reducer

Structural features


Main specifications are:

- universal mounting having feet integral with casing (lower, upper feet and vertical on the face opposite to motor for sizes 32 ... 81; lower and upper feet for sizes 100 ... 250) and B14 flange (integral with casing for sizes 32 ... 50) on 2 faces of hollow low speed shaft output. B5 flange with spigot «recess» which can be mounted onto B14 flanges (see chap. 16). Design and strength of the casing permit interesting shaft mounting solutions;

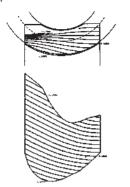
internal protection in epoxy powder paint (sizes 32 ... 81) or in epoxy resin paint (sizes 100 ... 250) appropriate for resistance to synthetic oils;

 possibility of obtaining combined gear reducer and gearmotor units providing high transmission ratios with different train of gears depending on overall dimension, efficiency, and final output speed requirements.

96

* concerning $n_1 = 1\,800$ rpm and transmission ratio stated in the scheme. 1) H₁, H₀ shaft height; D Ø low speed shaft end [in]: M_{N2} , M_{2} size torque [lb in]; F_{r2} radial load [lb].

- tickened size (10 sizes with 4 size pairs with final centre distance 32 ... 250) and performance gradation; the size pairs are obtained with the same casing and with many components in common;
- gear reducer structure sized so as to accept particularly powerful motors – both MR V and MR IV – and to permit the transmission of high nominal and maximum torques at low output speeds, this being the particular advantage of worm gear pairs;
- gearmotor sizes 40 ... 126 with 2 cylindrical coaxial gear pair first stage in order to obtain high – reversible and irreversible – transmission ratios with standardized motor (63 ... 112) in a compact and economy way;
- normally, gearmotors MR V sizes 32, 40 (with motor sizes 63 and 71) 50 (with motor sizes 71 and 80) and 63 ... 81 (with motor sizes 80 and 90) have motor flange **integral** with the casing;
- hollow low speed shaft with keyway, and (sizes 63 ... 250) with circlip groove for removal purposes: in spheroidal cast iron (grey cast iron for sizes 32 and 40) integral with wormwheel (sizes 32 ... 161) or steel (sizes 200 and 250); standard (left or right extension) or double extension low speed shaft (see ch. 16).
- gear reducers: input face with machined surface (R V) or flange (R IV) and with fixing holes: wormshaft end with key, and reduced wormshaft end with circlip groove (the same as for R IV, MR IV, MR 2IV, MR V 160 ... 250 with coupling);
- gearmotors: IEC standardized motor directly keyed into the worm (MR V), for motor sizes 200 ... 250 patented keying system to obtain easier installing and removing and avoid fretting corrosion; standardized motor with pinion directly mounted onto the shaft end (MR IV, MR 2IV);
- fan cooling (sizes 100 ... 250); use of double extension worm-shaft simply obtained by removing the fan cowl centre disc; for MR V 81 with motor 100 and 112, fan incorporated in motor mounting flange;
- bearings on worm: double row angular contact ball bearing plus ball bearing (size 32); face-to-face taper roller bearings (sizes 40 ... 161); paired back-to-back taper roller bearings plus one ball bearing (sizes 200 and 250);
- bearings on wormwheel: ball bearings (sizes 32 ... 160); taper roller bearings (sizes 161 ... 250);
- 200 UNI ISO 185 cast iron monolithic casing with transverse stiffening ribs, and high oil capacity;
- oil bath lubrication with synthetic oil (ch. 15) for «long-life» lubrication: units provided with one plug (sizes 32 ... 64) or two plugs (sizes 80 and 81) supplied filled with oil; with filler plug with valve, drain plug and level plug (sizes 100 ... 250) supplied without oil; sealed;
- paint: external coating in epoxy powder paint (sizes 32... 81) or in synthetic paint (sizes 100... 250) appropriate for resistance to normal industrial environments and suitable for the application of further coats of synthetic paint; colour blue RAL 5010 DIN 1843;


Train of gears:

- worm gear pair; 1 cylindrical gear pair plus worm; with 2 cylindrical gear pairs plus worm gear pair (gearmotor only);
- worm gear pairs, with whole-number transmission ratios (i = 10 ... 63) identical for the different sizes; i = 7 for MR V 32 ... 81;
- 10 sizes having 4 sizes pairs (standard and strengthened) with final reduction centre distance to R 10 series (32 ... 250) for a total of 14 sizes;
- nominal transmission ratios to R 10 series (10 ... 315; up to 16 000 for combined units);
- casehardened and hardened cylindrical worm in 16 CrNi4 or 20 MnCr5 UNI 7846-78 steel (depending on size) with ground and superfinished involute profile (ZI);
- wormwheel with profile especially conjugate to the worm through hob optimization, with hub in spheroidal or grey cast iron (depending on size) and **Ni bronze** CuSn12Ni2-B (EN1982-98) gear rim with high pureness and controlled phosphor contents;
- casehardened and hardened cylindrical gear pair in 16CrNi4 UNI 7846-78 steel with ground profile and helical toothing;
- train of gear load capacity calculated for breakage and wear; thermal capacity verified.

Specific standards:

- nominal transmission ratios and main dimensions according to standard numbers ISO 3-73;
- basic rack to, ISO/R 1122/2-69
- shaft heights to ISO 496-73;
- fixing flanges B14 and B5 (the latter with spigot «recess») taken from IEC 72.2;
- medium series fixing holes to ISO/R 273;
- cylindrical shaft ends (long or short) to ISO/R775/88 with tapped butt-end hole to DIN 332 BI. 2-70, NF E 22.056 excluding d-D diameter ratio;
- parallel keys to ISO/R 773-69 except for specific cases of motor-togear reducer coupling where key height is reduced;
- mounting positions derived from IEC 34;7;
- worm gear pair load capacity and efficiency to BS 721-83 integrated with ISO/CD 14521.

Lines of contact and area of action determined by computer to check on each individual gear pair design.

b - Electric motor

Standard design:

- IEC standardized motor;

- asynchronous three-phase, totally-enclosed, externally ventilated, with cage rotor
- single polarity, frequency 50 Hz, voltage Δ 230 V Y 400 V ± 10%¹⁾ up to size 132, Δ 400 V ± 10% from size 160 upwards;
- IP 55 protection, insulation class F, temperature rise class B¹);
- -rated power delivered on continuous duty (S1) and at standard voltage and frequency; maximum ambient temperature 104 °F (40 °C), altitude 3 200 ft: consult us if higher;
- capacity to withstand one or more overloads up to 1.6 times the nominal load for a maximum total period of 2 min per single hour;
- starting torque with direct on-line start at least 1,6 times the nominal (usually is higher);
- -mounting position B5 and derivates as shown in the following table
- suitable for the running with inverter (generous electromagnetic sizing, low-loss electrical stamping, phase separators, etc.)
- design available for every application need: flywheel, independent cooling fan, independent cooling fan and encoder, etc.

For other specifications and details see specific literature.

Max and min limits of motor supply; temperature rise class F for some motors with power or power-to-size correspondence not according to standard and motors 200 LR 6, 200 L 6.

Motor size	Main coupling dimensions UNEL 13117-71 (BI 1.A-65, IEC 72.2)							
	Shaft end Ø D × E	Flange Ø P B5						
63, 71 B5R ¹⁾ 71, 80 B5R ¹⁾ 80, 90 B5R 90, 100 B5R ¹⁾ , 112M B5R ¹⁾ 100, 112, 132M B5R ¹⁾ 132, 160 B5R 160 180, 200 B5R 200 225, 250 B5R	$\begin{array}{c} 0,433 \times 0,91 \\ 0,551 \times 1,18 \\ 0,748 \times 1,57 \\ 0,945 \times 1,97 \\ 1,102 \times 2,36 \\ 1,496 \times 3,15 \\ 1,654 \times 4,33 \\ 1,89 \times 4,33 \\ 2,165 \times 4,33 \\ 2,362 \times 5,51 \end{array}$	5,51 6,3 7,87 9,84 11,81 13,78 13,78 15,75 17,72						

1) Motor length **Y** and overall dimension **Y**₁ (ch. 10 and 12) increase of 0,55 in for sizes 71, 0,71 in for size 80, 0,87 in for sizes 100 and 112, 1,14 in for sizes 132.

Fan cowl centre disc removed so as to utilize double extension wormshaft.

Gear reducer design UO2B: reduced wormshaft end (also suitable for R IV, MR IV, MR 2IV, MR V 160 ... 250 with coupling). Double extension low speed shaft

Brake motor (prefix to designation: F0):

- IEC standardized motor having the same specifications as normal motor:
- particularly strong construction to withstand braking stresses; maximum noiselessness;
- spring-loaded d.c. electromagnetic brake feeding from the terminal box; brake can also be fed independently direct from the line;
- braking torque **proportionate** to motor torque (normally $M_f \approx 2 M_N$) adjustable by adding or removing couples of springs;
- high frequency of starting enabled;
- rapid, precise stopping;
- hand lever for manual release with automatic return; removable lever rod.

For other specifications and details see specific literature.

Frequency of starting z

As a general rule, the maximum permissible frequency of starting zfor direct on-line start (maximum starting time $0.5 \div 1$ s) is 63 starts/h up to size 90, 32 starts/h for sizes 100 ... 132 and 16 starts/h for sizes 160 ... 250 (star-delta starting is advisable for sizes 160 .. 250).

Brake motors can withstand a starting frequency double that of normal motors as described previously.

A greater frequency of starting z is often required for brake motors. In this case it is necessary to verify that:

$$Z \leq Z_0 \cdot \frac{J_0}{J_0 + J} \cdot \left[1 - \left(\frac{P}{P_1}\right)^2 \cdot 0.6\right]$$

where: z_0, J_0, P_1 are shown in the following table;

J is the external moment of inertia (of mass) in lb ft², (gear reducers, see ch 14 couplings, driven machine) referred to the motor shaft;

P is the power in hp absorbed by the machine referred to the motor shaft (therefore taking into account efficiency)

If during starting the motor has to overcome a resisting torque, verify the frequency of start-ing by means of the following formula:

$$z \le 0,63 \cdot z_0 \cdot \frac{J_0}{J_0 + J} \cdot \left[1 - \left(\frac{P}{P_1}\right)^2 \cdot 0,6\right]$$

Short time duty (S2) and intermittent periodic duty (S3); duty cicles S4 - S10

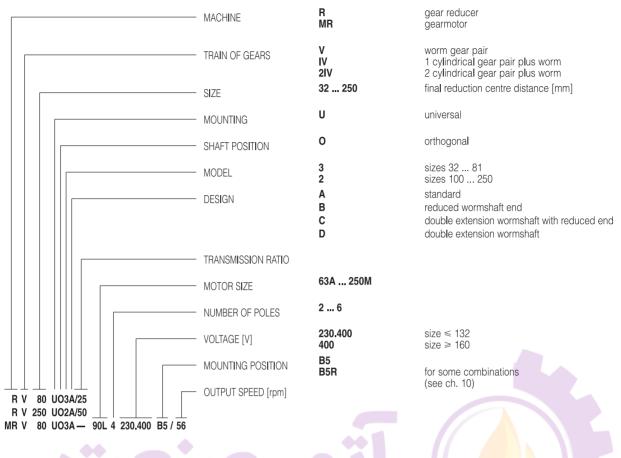
	Duty		Motor size ¹⁾								
	Duty		63 90	100 132	160 280						
S2	duration of running	90 min 60 min 30 min 10 min	1 1 1,12 1,25	1 1,06 1,18 1,25	1,06 1,12 1,25 1,32						
S3	cyclic duration factor	60% 40% 25% 15%		1,06* 1,12* 1,25 1,32							
S4 S10				consult us							

1) For motor sizes 90LC 4, 112MC 4, 132MC 4, consult us

These values become 1.12.1.18 for brake motors.

Principal specifications of normal and brake motors (50 Hz)

			2- poles - 3 4	100 rpm ¹)		4 -poles - 1	700 rpm ¹⁾		6 -poles - 1 100 rpm ¹⁾					
Motor	Mf _{max}	P ₁	z -poies - 3 4 J ₀			P_1		1		P_1			14		
size	Ib in	/ 1	<i>U</i> 0 ≈	<i>Z</i> 0	$\frac{M_{\rm start}}{M_{\rm N}}$	1	J ₀		$\frac{M_{\text{start.}}}{M_{\text{N}}}$	/ 1		Z_0	$\frac{M_{\text{start}}}{M_{\text{N}}}$		
	2) 4)	hp	lb ft² 2)	3)	≈ 3)	hp	lb ft² 2)	3)	3)	hp	lb ft² 2)	3)	3)		
63 A 63 B	30 30	0,25 0,33	0,0047 0.0071	4 750 4 750	3,7 3,7	0,16 0,25	0,0047 0,0071	12 500 12 500	3,6 3,2	0,12 0,16	0,0095	12 500 12 500	3,4 2,9		
63 C	30	0,5	0,0071	4 000	3,6	0,33	0,0071	10 000	3,1	-	-	_	-		
71 A 71 B 71 C	45 45 65	0,5 0,75 1	0,0095 0,0119 0,0142	4 000 4 000 3 000	3,4 3,4 3,4	0,33 0,5 0,75	0,0119 0,0166 0,019	10 000 10 000 8 000	3,2 3,1 3	0,25 0,33 0,5	0,0285 0,0285 0,0308	11 200 11 200 10 000	3,2 2,6 2,6		
80 A 80 B 80 C 80 D	90 132 132 132	1 1,5 2 —	0,019 0,0261 0,0308 —	3 000 3 000 2 500 —	3,4 2,7 3,3	0,75 1 1,5 2	0,0356 0,0451 0,0593 0,0664	8 000 7 100 5 000 5 000	3,2 3,6 3,4 2,7	0,5 0,75 1 —	0,0451 0,057 0,0783 —	9 500 9 000 7 100 —	2,6 2,6 2,6 —		
90 S 90 SB	132 132	2 2,5	0,0285 0,0332	2 500 2 500	3,6 3,4	1,5	0,0736	5 000	3	1	0,0831	7 100	2,8		
90 L 90 LB 90 LG	236 236 236	3 - 4	0,0403 0,0451	2 500 2 500 1 800	3,5 3,4	2 2,5 3	0,0973 0,1044 0,1139	4 000 4 000 3 150	3,3 3,3 3,4	1,5 2	0,1187 	5 300 5 000	2,8 3,1		
100 LR 100 L 100 LB	355 355 355	4 5,4	0,0831 0,102	 1 800 1 500	 3,3 4,8	3 4	0,121 0,1637 —	3 150 3 150 —	3,2 3,5 —	2 2,5	 0,2468 0,28		 3,2 3,3		
112 M 112 MB	670 355	5,4 7,5	0,1092 0,1281	1 500 1 400	4,8 4,7	5,4	0,2302	2 500 	3,8	3	0,337 —	2 800	3,5 —		
112 L	670	10	0,1804	1 060	4,9	7,5	0,2729	1 800	3,8	4	0,401	2 500	3,6		
132 S 132 SB	670 450	7,5 10	0,2349 0,28	1 250 1 120	2,9 3,6	7,5	0,5126	1 800	3,6	4	0,5126	2 360	2,8		
132 MR 132 M 132 L 132 LG	900 900 1 320 1 320	12,5 15 20 —	0,3251 0,4224 0,5363	1 060 850 710 —	4,5 4,5 4,6			 1 250 1 120 900	— 3,5 4,3 4,1	5,4 7,5 10 —	0,7261 0,8875 1,2625	1 500 1 320 1 000 —	3,5 2,8 2,9		
160 MR 160 M 160 L	750 1 500 2 240	15 20 25	0,9255 1,0441 1,1628	450 425 400	2,1 2,4 2,6	_ 15 20	 1,7086 1,9934	900 800	2 2,3	10 15	2,2781 2,8239	 1 120 950	2 2,3		
180 M 180 L	2 240 2 650	30 	1,1153	355 	2,5	25 30	2,3493 3,0849	630 500	2,3 2,4	_ 20	3,5596		 2,3		
200 LR 200 L 200 LG	3550 3550	40 50	4,3901 4,7461	160 160	2,4 2,5	40	4,7461	400	2,4	25 30	4,5088 5,6953 —	500 400	2,1 2,4 —		
225 S 225 M	—			-		50 60	7,5937 9,7294	-	2,3 2,4		11		 2,4		
250 M	_	_	_	_	_	75	12	_	2,3	50	14	_	2,6		
280 S 280 M	_	_		_	_	100 120	21 25		2,5 2,7	60 75	20 25	_	2,4 2,5		
315 S	_		_	_	_	150	27	_	2,6	100	34	_	2,3		
315 M 315 MB 315 MC						180 220	50 	- - -	2,5 2,5	120 150 —	61 71 —		2,5 2,4		


1) Motor speed on the basis of which the gearmotor speeds n_2 have been calculated. 2) Moment of inertia values J_0 , braking torque values M are valid for brake motor (size \leq 200L), only. 3) For size \leq 132, $M_{\text{start}} / M_{\text{t}}$ values and no load starting frequency z_0 [start./h] values are valid for brake motor, only. 4) Motor is usually supplied with lower braking torque setting (see **specific literature**). 5) For 2 pole 4 lb in. * Power or motor power-to-size correspondence not according to standard.

Specific standards:

- Electric Standard to NEMA MG 1;
- Dimensional Standard to IEC 72-2 (DIN 42677);
- protection to IEC 34-5;
- mounting positions to IEC 34-7;
- sound levels to IEC 34.9
- balancing and vibration velocity (vibration under standard rating N) to IEC 34-14; motors are balanced with half key inserted into shaft extension;
- cooling to IEC 34-6: standard type IC 411 (TEFC); type IC 416 for non-standard design with axial independent cooling fan.

3 - Designation

The designation is to be completed stating mounting position, through only if **different** from **B3**¹ (B3 or B8 for sizes \leq 64).

E.g.: R V 80 UO3A/25 mounting position V5;

Where brake motor is required, insert the letters **F0** before motor size.

E.g.: MR V 80 UO3A - F0 90L 4 230.400 B5/56

In the case of gear reducers sizes 200 and 250, mounting position B7, the designation is to be completed stating input speed n_1 . E.g.: R V 250 UO2A/50 n_1 = **560 rpm, mounting position B7** Where motor is supplied by the Buyer, omit voltage and add **motor** supplied by us.

E.g.: MR V 80 UO3A - 90L 4 ... B5/56 motor supplied by us.

In the event of a gear reducer or gearmotor being required in a design **different** from those stated above, specify it in detail (ch. 16).

 To make things easier, the designation of mounting position (see ch. 8 and 10) is referred to foot mounting only, even if gear reducers are in universal mounting (e.g.: B14 flange mounting and derivatives; B5 flange mounting and derivatives, see ch. 16).

4 - Thermal power Pt [hp]

Nominal thermal power Pt_{N^i} indicated in red in ch. 7 and 9 is that which can be applied at the gear reducer input when operating on continuous duty at a maximum ambient temperature of 104 °F (40 °C) and air velocity $\geq 0.38 \text{ ft/s}$, without exceeding 203 °F (95 °C) approximately oil temperature.

Thermal power Pt can be higher than the nominal Pt_N, described above, as per the following formula: $Pt = Pt_N \cdot ft$ where ft is the thermal factor depending on ambient temperature and type of duty as indicated in the table.

Wherever nominal thermal power P_{t_N} , is indicated in the catalogue it should be verified that the applied power P_1 is less than or equal to the Pt value ($P_1 \leq Pt = Pt_N \cdot ft$). If $P_1 > Pt$, consider the use of special lubricant: consult us.

For B6 or B7 mounting position gear reducers and gearmotors with train of gears \bm{V} multiply $\mathcal{P}t_N$ by $\bm{0,9}.$

Thermal power needs not be taken into account when maximum duration of continuous running time is $1 \div 3$ h (from small to large gear reducer sizes) followed by rest periods long enough to restore the gear reducer to near ambient temperature (likewise $1 \div 3$ h). In case of maximum ambient temperature above 104 °F (40 °C) or below 32 °F (0 °C) consult us.

			Duty								
Maximum ambient temperature °F (°C)	continuous S1		S3 . Cyclic durati	on factor [%]							
1 (0)		for 60 min running ¹⁾									
		60	40	25	15						
104 (40)	1	1,18	1,32	1,5	1,7						
86 (30)	1,18	1,4	1,6	1.8	2						
68 (20)	1,32	1,6	1,8	2	2,24						
50 (10)	1,5	1,8	2	2,24	2,5						

1) Duration of running on load [min] · 100

5 - Service factor fs

Service factor *fs* takes into account the different running conditions (nature of load, running time, frequency of starting, other considerations) which must be referred to when performing calculations of gear reducer selection and verification.

The powers and torques shown in the catalogue are nominal (i.e. valid for fs = 1) for gear reducers, corresponding to the fs indicated for gearmotors.

Details of service factor and considerations.

Given fs values are valid for:

- electric motor with cage rotor, direct on-line starting up to 12,5 hp, star-delta starting for higher power ratings; for direct on-line starting above 12,5 hp or for brake motors, select *fs* according to a frequency of starting double the actual frequency; for internal combustion engines multiply *fs* by 1,25 (multicylinder) or 1,5 (singlecylinder);
- maximum time on overload 15 s; on starting 3 s; if over and/or subject to heavy shock effect, consult us;

- a whole number of overload cycles (or start) imprecisely completed in 1, 2, 3 or 4 revolutions of low speed shaft; if precisely a continuous overloads should be assumed;
- standard level of reliability; if a higher degree of reliability is required (particularly difficult maintenance conditions, key importance of gear reducer to production, personnel safety, etc.) multiply *fs* by 1,25 ÷ 1,4.

Motors having a starting torque not exceeding nominal values (stardelta starting, particular types of motor operating on direct current, and single-phase motors), and particular types of coupling between gear reducer and motor, and gear reducer and driven machine (flexible, centrifugal, fluid and safety couplings, clutches and belt drives) affect service factor favourably, allowing its reduction in certain heavy-duty applications; consult us if need be.

Service factor based: on the **nature of load** and **running time** (this value is to be multiplied by the values shown in the tables alongside).

Service factor based on **frequency of starting** referred to the nature of load.

Nati	ure of load of the driven machine	Running time [h]									
Ref.	Description	3 150 ≤ 2 h/d		12 500 4 ÷ 8 h/d	25 000 8 ÷ 16 h/d	50 000 16 ÷ 24 h/d					
а	Uniform	0,67	0,85	1	1,25	1,6					
b	Moderate overloads (1,6 × normal)	0,85	1,06	1,25	1,6	2					
c	Heavy overloads (2,5 × normal)	1	1,25	1,5	1,9	2,36					

Load ref.		Frec	luenc	y of s [.]	tarting	g <i>z</i> [st	arts/h	1]						
	4	4 8 16 32 63 125 250 500												
а	1	1,06	1,12	1,18	1,25	1,32	1,4	1,5						
b	1 1		1,06	1,12	1,18	1,25	1,32	1,4						
с	1	1	1	1,06	1,12	1,18	1,25	1,32						

6 - Selection

a - Gear reducer

Determining the gear reducer size

- Make available all necessary data: required output power P_2 of gear reducer, speeds n_2 and n_1 , running conditions (nature of load, running time, frequency of starting z, other considerations) with reference to ch. 5.
- Determine service factor fs on the basis of running conditions (ch. 5).
- Select the gear reducer size (also, the train of gears and transmission ratio *i* at the same time) on the basis of n_2 , n_1 and of a power P_{N2} greater than or equal to $P_2 \cdot fs$ (ch. 7).
- Calculate power P_1 required at input side of gear reducer using
- the formula $\frac{P_2}{\eta}$, where $\eta = \frac{P_{N2}}{P_{N1}}$ is the efficiency of the gear re-

When for reasons of motor standardization, power P_1 applied at input side of gear reducer turns out to be higher than the power required (considering motor/gear reducer efficiency), it must be certain that this excess power applied will never be required, and frequency of starting z is so low as not to affect service factor (ch. 5).

Otherwise, make the selection by multiplying P_{N2} by $\frac{P_1}{P_1}$ applied

Calculations can also be made on the basis of torque instead of power; this method is even preferable for low n_2 values.

Verifications

- Verify possible radial loads F_{r1} , F_{r2} and axial load F_{a2} by referring to instructions and values given in ch. 12 and 13.
- When the load chart is available, and/or there are overloads due to starting on full load (mainly for high inertias and low transmission ratios), braking, shocks, irreversible or with low reversibility gear reducers in which the wormwheel becomes driving member due to the driven machine inertia, applied power higher than that required, other static or dynamic causes - verify that the maximum torque peak (ch. 14) is always less than M_{2max} (ch. 7); if it is higher or cannot be evaluated, in the above cases, install a safety device so that M_{2max} will never be exceeded.
- When nominal thermal power Pt_N is indicated in red in ch. 7, verify that $P_1 \leq Pt$ (ch. 4).

Designation for ordering

When ordering give the complete designation of the gear reducer as shown in ch. 3. The following information is to be given: design and mounting position (only when different from B3, B3 or B8 for size ≤ 64) (ch. 8); input speed n_1 for sizes 200 and 250 mounting position B7, - for the remainder, only if greater than 1 400 rpm or less than 355 rpm, accessories and non-standard designs, if any (ch. 16).

E.g.: R V 80 UO3A/25 mounting position V5

R V 250 UO2A/50 n_1 = 560 rpm, mounting position B7.

b - Gearmotor

Determining the gearmotor size

- Make available all necessary data: required output power P_2 of gearmotor, speed n₂, running conditions (nature of load, running time, frequency of starting z, other considerations) with reference to ch. 5.
- Determine service factor fs on the basis of running conditions (ch. 5).
- Select the gearmotor size on the basis of n_2 , fs, P_2 (ch. 9).

When for reasons of motor standardization, power P_2 available in catalogue is much greater than that required, the gearmotor can be

selected on the basis of a lower service factor ($fs \cdot \frac{P_2 \text{ required}}{P_2 \text{ available}}$)

provided it is certain that this excess power available will never be required and frequency of starting z is low enough not to affect service factor (ch. 5).

Calculations can also be made on the basis of torque instead of power; this method is even preferable for low n_2 values.

Verifications

- Verify possible radial load F_{r_2} and axial load F_{a2} referring to directions and values given in ch. 13.

- For the motor, verify frequency of starting z when higher than that normally permissible, referring to directions and values given in ch. 2b; this will normally be required for brake motors only.
- When a load chart is available, and/or there are overloads due to starting on full load (especially with high inertias and low transmis-sion ratios), braking, shocks, irreversible or with low reversibility gear reducers in which the wormwheel becomes driving member due to the driven machine inertia, other static or dynamic causes - verify that the maximum torque peak (ch. 14) is always less than M_{2max} (ch. 7); if it is higher or cannot be evaluated, in the above instances, install suitable safety devices so that M_{2max} will never be exceeded. M_{2max} value can be read off in ch. 7 against the corresponding speed n_2 and transmission ratio *i* of the worm gear pair.
- When nominal thermal power Pt_N is indicated in red in ch. 9, verify that $P_1 \leq Pt$ (ch. 4).

Designation for ordering

When ordering give the complete designation of the gearmotor as shown in ch. 3. The following information is to be given: design and mounting position of gearmotor (only if different from B3, B3 or B8 for size ≤ 64) (ch. 10), voltage and mounting position of motor; accessories and non-standard designs, if any (ch. 16).

E.g: MR V 80 UO3A - 90L 4 230.400 B5/56 mounting position V5; MR V 200 UO2A - F0 180M 4 400 B5/56 gearmotor with flexible coupling.

When motor is supplied by the Buyer, do not specify voltage, and complete the designation with the words: motor supplied by us.

MR V 200 UO2A - 180M 4 ... B5/35 motor supplied by us. E.a.: The motor supplied by the Buyer must be to UNEL standards with mating surfaces machined under accuracy rating (UNEL 13501-69) and is to be sent carriage and expenses paid to our factory for fitting to the gear reducer.

c - Combined gear reducer and gearmotor units

Combined units are obtained by coupling together normal single gear reducers and/or gearmotors.

Determining the final gear reducer size

- Make available all necessary data relating to the output of the final gear reducer: required torque M_2 speed n_2 , running conditions (nature of load, running time, frequency of starting z, other considerations) with reference to ch. 5
- Determine service factor fs on the basis of running conditions (ch. 5) and of n_2 (see *, ** ch. 11).
- Select the final gear reducer size and the corresponding efficiency η (ch. 11, table A), on the basis of n_2 and a torque value M_{N2} greater than or equal to $M_2 \cdot fs$ (the η value shown can be taken as valid even if the final gear reducer's train of gears is type IV). For fs < 1 verify that $M_2 \le M_2$ size.

Determining the type of combined unit

Select the final gear reducer basic reference, and the type and size of initial gear reducer or gearmotor (ch. 11 table B), on the basis of the final gear reducer size, and of the type of combined unit selected.

When selecting the type of unit, refer to the drawings in table B bearing in mind the following considerations:

gear reducer: gives greater operational flexibility; stress deriving from starting and heavy duty can be diminished thanks to the pos-sibility of locating couplings (flexible, centrifugal, fluid, safety or friction type), belt drives, etc. between gear reducer and motor.

gearmotor: provides a more compact and economical solution compared to the equivalent gear reducer combined unit;

combined units **R V** + R V or MR V; **R V** + R IV or MR IV: input and output shafts can be either parallel or orthogonal, overall dimensions are kept to a minimum, especially within the plane perpendicular to the low speed shafts; these units are normally irreversible; the latter two types give higher transmission ratios than the former two types as well as higher efficiency, with the same transmission ratio;

combined units MR V + R 2I, 3I or MR 2I, 3I: input and output shafts are orthogonal, overall dimensions kept at minimum along the direction of the low speed shaft; high efficiency;

combined units MR IV + R 2I, 3I or MR 2I, 3I: the same as above but with the possibility of higher transmission ratios, and with overall dimensions of the initial gear reducer or gearmotor contained within those planes defined by the mounting feet.

6 - Selection

Selection of initial gear reducer or gearmotor

- Calculate the speed n_2 and the required power P_2 at the initial gear reducer or gearmotor output, using the following formulae:

 n_2 initial = n_2 final \cdot *i* final

P_2 initial = $\frac{M_2 \text{ final} \cdot n_2 \text{ final}}{955 \cdot \eta \text{ final}}$ [hp]

- In the case of gear reducer, establish input speed n₁ at the input of the initial gear reducer.
- Make the selection of initial gear reducer or gearmotors as shown in ch. 6, paragraph a) or b) of this catalogue (in the case of worm gear reducers and gearmotors), or of catalogue E (in the case of coaxial gear reducers and gearmotors), bearing in mind that sizes are pre-established (and cannot be changed on account of couplings being standard) and that it is not necessary to verify the service factor.

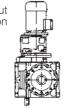
Designation for ordering

When ordering combined units, the single gear reducers or gearmotors must be designed **separately**, as indicated in ch. 6 paragraph a) or b), of this catalogue (for the final gear reducer and initial worm gear reducer or gearmotor) or of catalogue E (for initial coaxial gear reducer or gearmotor), bearing in mind the following):

- for all combined units, insert the words coupled with between the final gear reducer designation and that of the initial gear reducer or gearmotor;
- in the case of **RV** + R V or MR V and **RV** + R IV or MR IV, select the initial gear reducer or gearmotor stating the coupling **position** where applicable;
- when ordering MR V + R 2I, 3I or MR 2I, 3I and MR IV + R 2I, 3I or MR 2I, 3I always add the words without motor to the final gear reducer designation and select for the initial gear reducer or gearmotor oversized B5 flange design (for size 63 also add Ø 28); in case of initial gear reducer or gearmotor size 32 or 40 select FC1A flange design.

E.g: R V 100 UO2A/25 coupled with R V 50 UO3A/32

R V 100 UO2A/25 mounting position V5 coupled with MR V 50 UO3A - 71A 4 230.400 B5/28 pos. 3



MR V 200 UO2A - 180L 4 ... B5/43,8 without motor coupled with

R 2I 100 UC2A/29,3 oversized B5 flange

MR IV 200 UO2A - 132MB 4 ... B5/17,1 without motor, mounting position B6, double extension low speed shaft coupled with MR 3I 80 UC2A - 80A 4 230.400 B5/18,5 mounting position V5 oversized B5 flange

Considerations on selection

Motor power

Taking into account the efficiency of the gear reducer, and other drives — if any — motor power is to be as near as possible to the power rating required by the driven machine: accurate calculation is therefore recommended.

The power required by the machine can be calculated, seeing that it is related directly to several requirements of the work to be carried out, to friction (starting, sliding or rolling friction) and inertia (particularly when mass and/or acceleration or deceleration are considerable). It can also be determined experimentally on the basis of tests, comparison with existing applications, or readings taken with amperometers or wattmeters.

An oversized motor would involve: a greater starting current and consequently larger fuses and heavier cable; a higher running cost as power factor ($\cos \phi$) and efficiency would suffer; greater stress on the drive, causing danger of mechanical failure, drive being normally proportionate to the power rating required by the machine, not to motor power.

Only high values of ambient temperature, altitude, frequency of starting or other particular conditions require an increase in motor power.

Driving machines with high kinetic energy

When driving machines with high inertias and/or speeds, **avoid** the use of **irreversible** gear reducers or gearmotors, rather select a train of gears with higher efficiency (e.g. IV, 2IV in place of V), keeping the same transmission ratio, as stopping and braking can cause very high overloads (ch. 14).

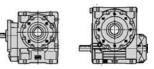
Drives with low input speed ($n_1 < 355$ rpm)

Wherever possible select the following transmission i = 20 for sizes 32 ... 50, i = 25 for sizes 63 ... 100, i = 32 for sizes 125 ... 200, i = 40 for size 250, these being the ratios capable of transmitting highest torque (for performance figures see table A ch. 11; for sizes 32 and 40, consult us).

Input speed

For n_1 higher than 1 800 rpm, **power** and **torque** ratings relating to a given transmission ratio vary as shown in the table alongside. In this case no loads should be imposed on the high speed shaft end.

For variable n_1 , the selection should be carried out on the basis of $n_{1\text{max}}$; but it should also be verified on the basis of $n_{1\text{ min}}$.


When there is a belt drive between

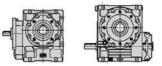
motor and gear reducer, different input speeds n_1 , should be examined in order to select the most suitable unit from engineering and economy standpoints alike (our catalogue favours this method of selection as it shows a number of input speed values n_1 relating to a determined output speed n_{N2} in the same section).

n ₁ rpm	$P_{\rm N2}$	M _{N2}
2 800 2 240 1 800	1,4 1,25 1,12	0,71 0,8 0,9
1 400	1	1

Input speed should not be higher than 1 800 rpm, unless conditions make it necessary; better to take advantage of the transmission, and use an input speed lower than 900 rpm.

Spe	eed									Gear r	educer s	size					
n _{N2}	n ₁	Train of gears	P hp M														
™N2 rp		<i>i</i> 1)	10 1b in 2)	32	40	50	63	64	80	81	100	125	126	160	161	200	250
180	1 800	V 10	P _{N1} P _{N2} M _{N2} M _{2max}	0,89 0,77 269 <i>488</i>	1,56 1,36 475 <i>870</i>	2,77 <mark>2,2</mark> 2,43 850 1 540	4,71 <mark>3,6</mark> 4,21 1 470 <i>2 730</i>	5,6 3,6 5 1 750 <i>2 960</i>	8,5 5,5 7,7 2 680 <i>4 900</i>	10,1 5,5 9,1 3 190 <i>5 300</i>	16 14,5 5 100 <i>9 200</i>	25,3 23 8 100 <i>14 500</i>	30,1 25 27,4 9 600 15 800	46,1 <mark>38</mark> 42,2 14 800 <i>27 700</i>	55 38 50 17 600 <i>31 900</i>	-	-
140	1 800	V 13	P _{N1} P _{N2} M _{N2} M _{2max}	0,73 0,62 281 <i>492</i>	1,29 1,1 500 <i>920</i>	2,32 2 910 <i>1 650</i>	3,8 <mark>3</mark> 3,32 1 510 <i>2 780</i>	4,52 <mark>3</mark> 3,96 1 800 <i>3 020</i>	7,1 4,7 6,3 2 860 <i>5 200</i>	8,5 4,7 7,5 3 400 <i>5 600</i>	13,8 12,3 5 600 <i>10 300</i>	22,1 19,9 9 100 <i>16 500</i>	26,2 23,7 10 800 <i>18 000</i>	40,3 36,6 16 700 <i>30 900</i>	47,9 <mark>35</mark> 43,5 19 800 <i>33 600</i>	72 53 66 30 100 <i>54 700</i>	-
112	1 800	V 16	$P_{ m N1} \ P_{ m N2} \ M_{ m N2} \ M_{ m 2max}$	0,64 0,53 298 <i>520</i>	1,14 0,96 540 <i>930</i>	2 1,7 950 1 630	3,29 <mark>2,8</mark> 2,84 1 590 <i>2 870</i>	3,92 <mark>2,8</mark> 3,38 1 900 <i>3 110</i>	6,2 4,3 5,4 3 020 5 400	7,3 4,3 6,4 3 590 <i>5 800</i>	10,3 5 800 <i>10 400</i>	18,7 16,6 9 300 <i>16 200</i>	22,2 19,7 11 100 <i>17 600</i>	34,3 30,7 17 200 <i>33 000</i>	40,8 <mark>31</mark> 36,5 20 400 <i>35 900</i>	62 51 56 31 400 <i>54 300</i>	110 78 100 56 100 <i>97 900</i>
	1 120	V 10	$P_{ m N1} \ P_{ m N2} \ M_{ m N2} \ M_{ m N2} \ M_{ m 2max}$	0,65 0,55 311 <i>570</i>	1,18 1 560 <i>1 020</i>	2,08 1,7 1,79 1 010 <i>1 810</i>	3,54 <mark>2,9</mark> 3,12 1 760 <i>3 270</i>	4,22 <mark>2,9</mark> 3,72 2 090 <i>3 550</i>	6,6 4,4 5,9 3 300 <i>5 900</i>	7,8 4,4 7 3 920 <i>6 400</i>	12,5 11,2 6 300 <i>11 300</i>	20 18 10 100 <i>17 900</i>	23,8 18 21,4 12 100 <i>19 500</i>	35,5 <mark>27</mark> 32,2 18 100 <i>32 900</i>	42,2 27 38,4 21 600 <i>37 800</i>	-	-
90	1 800	V 20	$P_{ m N1}$ $P_{ m N2}$ $M_{ m N2}$ $M_{ m 2max}$	0,59 0,46 325 <i>570</i>	1,04 0,83 580 1 <i>030</i>	1,48 1 030 <i>1 870</i>	2,67 2,28 1 600 <i>2 870</i>	3,18 2,6 2,71 1 900 <i>3 120</i>	4,9 3,9 4,23 2 960 5 400	5,8 3,9 5 3 530 <i>5 900</i>	9,5 8,3 5 800 <i>10 400</i>	15,5 13,6 9 600 <i>17 200</i>	18,5 16,2 11 400 <i>18 700</i>	28,4 25,2 17 600 <i>33 000</i>	33,7 29 29,9 21 000 <i>35 800</i>	55 43 49 34 300 <i>60 200</i>	94 66 84 59 000 105 400
	1 120	V 13	P _{N1} P _{N2} M _{N2} M _{2max}	0,54 0,45 327 <i>580</i>	0,95 0,8 580 1 <i>060</i>	1,75 1,48 1 080 <i>1 920</i>	2,87 2,4 2,47 1 810 <i>3 400</i>	3,42 <mark>2,4</mark> 2,94 2 150 <i>3 700</i>	5,3 3,7 4,63 3 390 <i>6 400</i>	6,3 3,7 5,5 4 030 <i>6 900</i>	9,4 6 900 <i>12 500</i>	17,1 15,3 11 200 <i>20 100</i>	20,4 16 18,2 13 300 <i>21 800</i>	31,7 <mark>25</mark> 28,6 20 900 <i>37 800</i>	37,7 25 34 24 900 <i>41 100</i>	58 38 52 38 300 69 100	-
71	1 800	V 25	P _{N1} P _{N2} M _{N2} M _{2max}	0,47 0,36 318 <i>560</i>	0,87 0,68 590 1 <i>000</i>	1,22 1 070 <i>1 830</i>	2,51 2 2,04 1 780 <i>3 200</i>	2,99 2 2,42 2 120 <i>3 480</i>	4,67 3,1 3,85 3 370 5 900	5,6 3,1 4,58 4 010 6 400	9,1 7,6 6 700 11 700	13 11,3 9 900 <i>17 300</i>	15,5 13,5 11 800 <i>18 800</i>	23,6 20,7 18 100 <i>31 600</i>	28 24,7 21 600 <i>34 300</i>	43 38,1 33 400 <i>59 300</i>	78 63 70 60 800 <i>104 300</i>
	1 120	V 16	P _{N1} P _{N2} M _{N2} M _{2max}	0,48 0,39 350 <i>590</i>	0,85 0,7 630 1 <i>060</i>	1,55 1,29 1 160 <i>1 870</i>	2,51 2,13 1 910 <i>3 370</i>	2,99 2,2 2,53 2 280 <i>3 660</i>	4,77 3,4 4,09 3 680 6 400 4,9 3,6	5,7 3,4 4,87 4 380 <i>6 900</i>	8,9 7,7 7 000 <i>12 300</i>	14,2 12,5 11 200 <i>19 500</i>	16,9 14 14,8 13 400 <i>21 200</i>	26,822 23,8 21 400 <i>38 300</i>	31,9 22 28,3 25 500 41 600	49,1 <mark>36</mark> 44,2 39 800 <i>67 900</i>	88 57 79 71 500 <i>122 500</i>
	710	V 10	P _{N1} P _{N2} M _{N2} M _{2max}	0,48 0,4 352 <i>640</i>	0,87 0,73 650 1 150	1,55 1,31 1 160 <i>2 060</i>	2,62 2,27 2 020 <i>3 660</i>	3,12 <mark>2,4</mark> 2,7 2 400 <i>3 970</i>	4,29 3 810 <i>6 900</i>	5,8 <mark>3,6</mark> 5,1 4 530 <i>7 500</i>	9,5 8,4 7 400 <i>13 000</i>	15,5 <mark>13</mark> 13,8 12 300 <i>21 200</i>	18,4 13 16,4 14 600 <i>23 000</i>	27,120 24,3 21 600 <i>39 200</i>	32,2 20 29 25 700 <i>45 000</i>	-	-
56	1 800	V 32	$P_{ m N1}$ $P_{ m N2}$ $M_{ m N2}$ $M_{ m 2max}$	0,38 0,28 313 <i>530</i>	0,69 0,52 590 <i>990</i>	1,18 0,91 1 020 <i>1 740</i>	1,95 1,54 1 730 <i>3 110</i>	2,32 1,8 1,83 2 060 <i>3 370</i>	3,63 2,8 2,93 3 280 5 900	4,32 2,8 3,48 3 900 <i>6 400</i>	7,1 5,8 6 500 <i>11 500</i>	11,4 9,5 10 600 <i>19 200</i>	13,6 11,3 12 600 <i>20 800</i>	20,7 17,4 19 500 <i>36 000</i>	24,6 20 20,7 23 200 <i>39 100</i>	38,131 32,4 36 300 66 600	58 51 56 900 <i>101 200</i>
	1 120	V 20	P _{N1} P _{N2} M _{N2} M _{2max}	0,44 0,34 379 <i>630</i> 0,4	0,79 0,6 680 1 170 0,71	1,39 1,1 1,09 1 230 <i>2 060</i> 1,28	1,99 1,65 1 860 <i>3 340</i> 2,16	2,36 1,97 2 220 <i>3 630</i> 2,57 2	3,67 3,11 3 500 <i>6 300</i> 4,03 3	4,37 3,1 3,7 4 160 <i>6 900</i> 4,8 3	7,3 6,2 7 000 <i>11 700</i> 8,1	12,1 10,4 11 800 <i>20 400</i> 13,2	14,4 12,4 14 000 <i>22 200</i> 15,7 12	22 19,2 21 600 <i>38 000</i> 24,4 18	26,1 20 22,9 25 800 <i>41 300</i> 29 18	43,4 <mark>31</mark> 38,4 43 200 <i>74 000</i> 45,2 28	74 48 66 74 200 <i>126 100</i>
	710	V 13	P _{N1} P _{N2} M _{N2} M _{2max}	0,32 373 <i>650</i>	0,58 670 1 180	1,06 1 220 <i>2 150</i>	1,82 2 100 <i>3 800</i>	2,16 2 500 <i>4 120</i>	3,43 3 960 <i>7 200</i>	4,09 4 720 <i>7 800</i>	7 8 000 <i>13 800</i>	11,6 13 400 <i>23 400</i>	13,8 15 900 <i>25 400</i>	21,7 25 100 <i>43 700</i>	25,8 29 800 <i>46 700</i>	40,5 46 700 <i>82 300</i>	-
45	1 800	V 40	P _{N1} P _{N2} M _{N2} M _{2max}	0,3 0,21 300 <i>510</i>	0,53 0,39 540 <i>940</i>	0,95 0,71 990 <i>1 680</i>	1,58 1,22 1 710 <i>3 040</i>	1,88 1,45 2 030 <i>3 310</i>	2,89 2,27 3 180 <i>5 800</i>	3,44 2,5 2,7 3 790 <i>6 200</i>	5,6 4,55 6 400 <i>10 700</i>	8,9 7,2 10 100 <i>18 300</i>	10,5 8,6 12 000 <i>19 900</i>	16,6 13,7 19 200 <i>35 900</i>	19,7 16,3 22 900 <i>39 000</i>	30 25,1 35 200 <i>64 400</i>	54 44 45,2 63 300 113 400
	1 120	V 25	P _{N1} P _{N2} M _{2max}	0,36 0,26 369 <i>630</i>	0,65 0,49 680 1 130	1,16 0,89 1 250 <i>2 070</i>	1,9 1,6 1,49 2 090 <i>3 720</i>	1,77 2 490 <i>4 040</i>	3,59 2,4 2,88 4 050 6 900	4,27 2,4 3,43 4 820 7 500	6,9 5,7 8 000 <i>13 800</i>	9,7 8,3 11 700 <i>20 400</i>	11,6 9,9 13 900 <i>22 100</i>	17,9 15,5 21 800 <i>37 400</i>	21,3 18,5 26 000 40 700	34,429 30,1 42 300 72 500	61 46 54 76 400 128 300
	710	V 16	P _{N1} P _{N2} M _{N2} M _{2max}	0,35 0,28 398 <i>660</i> 0,35	0,63 0,5 710 1 <i>210</i>	1,15 0,94 1 330 <i>2 150</i>	1,87 1,55 2 200 <i>3 820</i>	2,23 1,8 1,84 2 620 <i>4 150</i> 2,26	3,55 2,8 2,98 4 230 <i>7 300</i> 3,56	4,22 2,8 3,54 5 000 <i>8 000</i>	6,8 5,8 8 200 <i>13 900</i> 7	10,9 9,4 13 400 <i>22 600</i>	13 10 11,2 15 900 <i>24 600</i> 13,6 9,6	20,5 16 17,9 25 400 44 700	24,4 16 21,3 30 200 <i>48 600</i> 24 4 15	37,8 <mark>27</mark> 33,6 47 700 <i>79 300</i>	68 42 61 86 500 143 300
		V 10	P _{N1} P _{N2} M _{N2} M _{2max}	0,28 391 <i>720</i>	0,63 0,51 720 1 300	1,13 0,93 1 300 <i>2 340</i>	1,91 1,62 2 280 <i>4 180</i>	1,93 2 700 <i>4 540</i>	3,07 4 300 <i>7 700</i>	4,24 3,1 3,65 5 100 <i>8 400</i>	6,1 8 500 <i>14 500</i>	11,4 9,6 10 14 000 <i>24 400</i>	13,6 9,6 11,9 16 700 <i>26 400</i>	18,2 25 400 <i>45 200</i>	24,4 15 21,6 30 300 <i>51 900</i>	_	_

Values in red state nominal thermal power Pt_{N} (ambient temperature 104°F (40 °C), continuous duty see ch. 4). For *n*, higher than 1 400 rpm or lower than 355 rpm see ch. 6 and page 18. 1) Values given for train of gears **IV** are nominal; see page 18 for effective transmission ratios. 2) M_{2max} represents maximum torque peak the gear reducer will withstand.

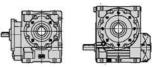


				Gear reducer size													
Spe	eed		Р							Gear r	educer s	size					
		Train of gears	hp														
n _{N2}		i	М														
rp	m I		lb in	32	40	50	63	64	80	81	100	125	126	160	161	200	250
		1)	2) P	0,33	0,56	1,02	1,63	1,94 1,7	3.11 2.5	3,71 <mark>2,5</mark>	6	9,9	11,8 <mark>8,6</mark>		21,7 <mark>14</mark>	33,7 <mark>23</mark>	60 36
35,5	1 800	IV 50	P _{N1} P _{N2}	0,24	0,43	0,8	1,31	1,56	2,53	3,01	4,94	8,3	9,9	15,5	18,4	29,1	53
			M _{N2} M _{2max}	427 710	750 1 240	1 400 <i>2 280</i>	2 330 4 060	2 770 4 410	4 510 <i>7 800</i>	5 400 <i>8 500</i>	8 800 14 400	14 500 24 500	17 300 26 600	27 500 48 500	32 700 52 700	51 800 <i>85 400</i>	93 900 152 200
			$P_{\rm N1}$	0,23	0,41	0,73	1,22	1,46	2,26	2,69	4,19	7	8,3	12,8	15,3	24,4	42,6
	1 800	V 50	$P_{\rm N2}$	0,16	0,29	0,52	0,91	1,08	1,72	2,05	3,28	5,6	6,7	10,4	12,4	20,1	35,5
			M _{N2} M _{2max}	274 <i>452</i>	500 <i>880</i>	920 1 670	1 600 <i>2 830</i>	1 900 <i>3 080</i>	3 020 <i>5 300</i>	3 590 <i>5 800</i>	5 800 10 000	9 800 17 700	11 600 <i>19 300</i>	18 200 34 100	21 700 <i>37 000</i>	35 200 64 600	62 200 115 300
			$P_{\rm N1}$	0,28	0,51	0,9	1,47	1,75 1,4	2,76 2,2	3,28 <mark>2,2</mark>	5,5	8,8	10,5	15,9	18,9 <mark>14</mark>	30 22	45,3
	1 120	V 32	P _{N2} M _{N2}	0,2 359	0,37 670	0,66 1 190	1,12 2 020	1,33 2 400	2,15 3 880	2,56 4 610	4,35 7 800	7,1 12 800	8,5 15 300	13,1 23 600	15,6 28 100	25,2 45 300	39,4 71 000
			M _{N2} M _{2max}	610	1 130	2 020	3 570	3 880	6 800	7 400	12 900	22 500	24 400	41 100	44 600	78 000	122 600
			P _{N1} P _{N2}	0,33	0,58	1,05	1,46	1,74	2,74	3,26 <mark>2,6</mark>		9,1	10,9	16,8	20 15	33,423	58 <mark>35</mark>
	710	V 20	P _{N2} M _{N2}	0,24 427	0,43 770	0,8	1,18	1,41 2 500	2,26	2,68 4 760	4,65 8 300	7,7 13 800	9,2 16 400	14,4 25 600	17,1 30 400	29,1 51 600	51 90 100
			M_{2max}	710	1 290	2 360	3 730	4 050	7 200	7 800	13 500	23 500	25 500	44 100	47 900	83 900	151 500
	450	V 13	P _{N1} P _{N2}	0,29 0,23	0,51 0,41	0,92 0,75	1,59 1,31	1,9 1,56	2,98 2,49	3,55 <mark>2,5</mark> 2,96	6 5,1	9,7 8,4	11,5 <mark>8,6</mark> 10	18,5 14 16,2	22,1 <mark>14</mark> 19,3	34,7 <mark>21</mark> 30,6	
	400	V 13	$M_{\rm N2}$	414	750	1 360	2 390	2 840	4 530	5 400	9 200	15 300	18 200	29 600	35 200	55 800	-
			M _{2max}	730	1 320	2 430	4 300	4 670	8 000	8 700	15 700	26 500	28 800	50 800	55 200	92 300	
28	1 800	IV 63	P _{N1} P _{N2}	0,26 0,18	0,52 0,38	0,95 0,69	1,25 0,99	1,49 1,17	2,38 1,9	2,83 <mark>2,3</mark> 2,26	4,9 3,98	8,2 6,8	9,8 7,8 8	14,9 <mark>12</mark> 12,4	17,7 <mark>12</mark> 14,8	29,6 19 25,1	52 <mark>31</mark> 44,7
20	1 000	• • • • •	$M_{\rm N2}$	418	820	1 510	2 200	2 620	4 230	5 000	8 900	14 800	17 600	27 600	32 800	55 700	99 300
			M _{2max}	710	1 380	2 500	3 950	4 290	7 600	8 200	14 000	24 700	26 800	47 700	51 800	90 000	163 000
	1 800	V 63	P _{N1} P _{N2}	_	0,3 0,2	0,57 0,38	0,94 0,67	1,11 0,79	1,76 1,29	2,09	3,34 2,52	5,4 4,21	6,5 5	9,7 7,7	11,6 9,1	18,5 14,9	32,8 26,8
			$M_{\rm N2}$		436	850	1 470	1 750	2 850	3 390	5 600	9 300	11 100	16 900	20 100	32 800	59 200
			M _{2max} P _{N1}	0,22	660 0,4	1 300 0,7	<i>2 540</i> 1,18	2 840 1,4	5 200 2,18	5 700 2,6 <mark>2</mark>	9 800 4,27	16 300 6,8	17 800 8,1	31 200 12,9	33 900 15,3 13	59 000 23,7 <mark>20</mark>	106 400 41,4 <mark>32</mark>
	1 120	V 40	$P_{\rm N2}$	0,15	0,27	0,5	0,87	1,03	1,66	1,98	3.33	5,3	6,4	10,4	12,4	19,4	34,5
			M _{N2} M _{2max}	337 580	620 1 050	1 130 <i>1 920</i>	1 960 <i>3 470</i>	2 330 <i>3 770</i>	3 740 6 400	4 450 7 000	7 500 12 300	12 000 21 300	14 300 23 100	23 400 40 500	27 800 44 000	43 700 77 600	77 800 137 800
				0,26	0,47	0,86	1,43	1,7 1,3	2,69 2	3,2 2	5,2	7,2	8,5	13,2	15,8	26,421	47,533
	710	V 25	P _{N1} P _{N2}	0,19 418	0,34 760	0,63	1,08	1,28 2 850	2,08	2,48 5 500	4,1 9 100	6 13 300	7,1 15 900	11,2 24 900	13,4 29 700	22,7 50 300	41,3 91 700
			M _{N2} M _{2max}	710	1 280	2 350	4 190	2 050 4 550	4 620 7 800	8 500	9 100 15 500	23 300	25 300	43 100	46 800	83 300	91700 150800
			P _{N1} P _{N2}	0,25	0,45	0,83	1,35	1,61	2,57	3,06 <mark>2,3</mark>	5	8,2	9,7 7,4	15,4 <mark>12</mark>	18,4 <mark>12</mark>	27,9 <mark>20</mark>	50 <mark>31</mark>
	450	V 16	P _{N2} M _{N2}	0,2 439	0,35 790	0,65 1 470	1,09 2 440	1,3 2 900	2,11 4 730	2,51 5 600	4,16 9 300	6,9 15 400	8,2 18 400	13,2 29 600	15,7 35 200	24,4 54 700	44,4 99 600
			M _{2max}	710	1 280	2 410	4 290	4 650	8 300	9 000	15 400	25 600	27 800	50 900	55 300	88 700	158 300
	1 000		P _{N1}	0,21	0,42		1,25	1,48 1,2	2,36 1,8	2,81 1,8		6,4	7,6	11,6	13,9 11	23,218	42 29
22,4	1 800	IV 80	$P_{\rm N2}$ $M_{\rm N2}$	0,14 408	0,29 790	0,54 1 480	0,91 2 530	1,08 3 010	1,76 4 900	2,1 5 800	3,48 9 700	5,2 14 100	6,2 16 800	9,6 26 600	11,4 31 600	19,3 53 700	35,6 98 800
			$M_{2 \max}$	680	1 340	2 480	4 440	4 820	8 300	9 000	16 400	25 000	27 200	46 400	50 300	86 500	156 900
	1 120	IV 50	P _{N1} P _{N2}	0,23 0,16	0,39 0,29	0,71 0,55	1,13 0,88	1,35 1,05	2,17	2,58 <mark>2,2</mark> 2,05	4,23 3,41	7,1 5,8	8,4 <mark>6,5</mark> 6,9	13,310 11	15,8 <mark>10</mark> 13,1	23,7 17 20,2	43,2 <mark>27</mark> 37,1
			$M_{\rm N2}$	470	820	1 530	2 530	3 010	4 940	5 900	9 800	16 200	19 200	31 500	37 500	57 600	106 000
			M _{2max}	780 0,16	1 330 0,3	2 470 0,54	4 400 0,9	4 780 1,07	<i>8 500</i> 1,68	9 200 2	16 200 3,13	27 100 5,2	29 400 6,2	52 900 9,9	57 400 11,8	<i>94 200</i> 19,3	168 500 34
	1 120	V 50	P _{N1} P _{N2}	0,1	0,2	0,37	0,64	0,76	1,23	1,47	2,36	4,03	4,79	7,8	9,3	15,5	27,9
			M _{N2} M _{2max}	295 461	560 <i>890</i>	1 040 1 760	1 790 <i>3 220</i>	2 130 <i>3 500</i>	3 470 6 100	4 130 6 600	6 600 11 600	11 300 <i>20 400</i>	13 500 22 200	21 900 <i>39 500</i>	26 100 42 900	43 700 76 900	78 500 138 000
			$P_{\rm N1}$	0,21	0,37	0,67	1,09	1,3	2,06	2,45 1,8	4,1	6,7	8 6,6	12,1	14,4 10	23,216	33,9
	710	V 32	$P_{\rm N2}$	0,14	0,26 730	0,47	0,8 2 270	0,95	1,55	1,84	3,16	5,3	6,3	9,7 27 600	11,6	19 54 000	28,9 82 200
			M _{N2} M _{2max}	408 680	1 230	1 350 2 210	3 980	2 700 4 330	4 400 7 700	5 200 <i>8 300</i>	9 000 14 800	15 000 <i>25 600</i>	17 800 27 800	47 200	32 800 51 300	91 200	82 200 141 000
	450		P _{N1} P _{N2}	0,24	0,43	0,77	1,02	1,22	1,95	2,32	4,06	6,7	7,9	12,5	14,9 11	24,817	44,3 <mark>26</mark>
	450	V 20	P _{N2} M _{N2}	0,17 470	0,31 860	0,57 1 590	0,81	0,97 2 710	1,57 4 410	1,87 5 200	3,32 9 300	5,5 15 500	6,6 18 400	10,5 29 500	12,5 35 100	21,2 59 400	38,2 107 100
			M_{2max}	780	1 400	2 570	4 140	4 510	8 000	8 700	14 800	26 300	28 500	50 000	54 300	95 900	169 300
40	1 000	N/ 400	P _{N1} P _{N2}	0,16	0,33	0,59	0,94	1,12	1,81	2,15 1,6	3,62	6,1		10,8 8,8			29,5
18	1 800	IV 100	P _{N2} M _{N2}	0,1 366	0,22 770	0,4	0,66 2 360	0,79 2 810	1,3 4 650	1,55 5 500	2,67 9 500	4,58 16 000	5,4 19 100	8,3 29 700	9,9 35 300	16,3 57 800	24,5 87 000
			M_{2max}	600	1 300	2 330	4 200	4 560	8 100	8 800	15 300	26 800	29 100	50 800	55 200	97 400	148 700
	-				-											-	

Values in red state nominal thermal power $P_{t_{N}}$ (ambient temperature 104°F (40 °C), continuous duty see ch. 4). For n_r higher than 1 400 rpm or lower than 355 rpm see ch. 6 and page 18. 1) Values given for train of gears **IV** are nominal; see page 18 for effective transmission ratios. 2) M_{2max} represents maximum torque peak the gear reducer will withstand.

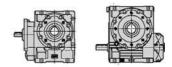
Spe	Speed									Gear r	educer s	size					
		Train of	P														
n	n_1	gears	[hp] <i>M</i>														
n _{N2} rp		i	[lb in]			1		1	1			1	1			1	1
		1)	2)	32	40	50	63	64	80	81	100	125	126	160	161	200	250
			$P_{\rm N1}$	0,19	0,37	0,67	0,88	1,02	1,63	1,94	3,44	5,8	6,9	10,7	12,8 9,2		38,5 <mark>23</mark>
18	1 120	IV 63	P _{N2}	0,13 459	0,26 900	0,48 1 670	0,68	0,78 2 800	1,27 4 560	1,51 5 400	2,73 9 800	4,62 16 200	5,5 19 300	8,7 31 200	10,4	17,7 63 100	32,2 115 100
			M _{N2} M _{2max}	459 760	900	2 700	4 170	2 000 4 670	8 200	8 900	15 600	27 100	29 400	53 000	57 600	99 000	179 800
					0,2	0,38	0,67	0,78	1,27	1,52	2,45	3,99	4,75	7,2	8,6	14,1	25,2
	1 120	V 63	P _{N1} P _{N2}	-	0,13	0,25	0,45	0,53	0,89	1,06	1,77	2,97	3,53	5,5	6,6	11	20,2
			M _{N2} M _{2max}		446 670	870 1 330	1 600 <i>2 580</i>	1 870 <i>2 890</i>	3 160 <i>5 300</i>	3 760 <i>5 900</i>	6 300 10 400	10 500 19 300	12 500 20 900	19 600 <i>36 000</i>	23 300 <i>39 100</i>	39 000 <i>69 800</i>	71 500 126 700
			$P_{\rm N1}$	0,16	0,29	0,51	0,86	1,02	1,63	1,94	3,17	5,1	6,1	9,8	11,7 9,4		31,9 <mark>23</mark>
	710	V 40	P_{N2}	0,1 366	0,19	0,35	0,61	0,72	1,18	1,41	2,37	3,9	4,65	7,7	9,1	14,4	25,9
			M _{N2} M _{2max}	500 600	670 1 160	1 230 2 090	2 160 <i>3 820</i>	2 570 4 150	4 200 7 400	5 000 <i>8 000</i>	8 400 13 900	13 900 24 100	16 500 <i>26 200</i>	27 300 46 200	32 400 50 200	51 200 <i>88 800</i>	92 000 162 000
			$P_{\rm N1}$	0,19	0,34	0,62	1,03	1,22	1,96	2,33 1,7	3,81	5,2	6,2	9,6	11,4	19,1 <mark>16</mark>	34,9 <mark>25</mark>
	450	V 25	$P_{\rm N2}$	0,13	0,23	0,44	0,75	0,89	1,46	1,74	2,92	4,24	5	8	9,5	16	29,8
			M _{N2} M _{2max}	459 760	820 1 410	1 540 <i>2 540</i>	2 630 4 670	3 130 5 100	5 100 <i>8 800</i>	6 100 <i>9 500</i>	10 200 17 400	14 900 <i>26 400</i>	17 700 28 700	27 900 48 400	33 200 52 600	56 100 <i>91 900</i>	104 300
			P _{N1}	0,12	0,25	0,45	0,75	0,89	1,4	1,67	2,76	4,64	5,5	8,8	10,4 8	16,212	28,5 <mark>20</mark>
14	1 800	IV 125	P_{N2}	0,07	0,16	0,29	0,51	0,6	0,98	1,16	1,98	3,38	4,02	6,6	7,9	12,4	22,4
			M _{N2} M _{2max}	312 467	690 1 180	1 270 <i>2 200</i>	2 260 <i>4 020</i>	2 690 <i>4 360</i>	4 360 7 600	5 200 <i>8 200</i>	8 800 14 400	14 800 <i>25 200</i>	17 600 27 400	29 400 49 500	35 000 53 800	55 300 <i>94 400</i>	99 600 168 000
			$P_{\rm N1}$	0,15	0,29	0,53	0,86	1,02	1,66	1,98 1,5	3,28	4,52	5,4	8,1	9,7	16,1 13	29,621
	1 120	IV 80	$P_{\rm N2}$	0,1	0,19	0,36	0,6	0,72	1,2	1,42	2,42	3,57	4,25	6,5	7,7	13,1	24,5
			M _{N2} M _{2max}	450 720	840 1 430	1 600 <i>2 630</i>	2 700 4 840	3 220 5 300	5 400 <i>9 000</i>	6 400 <i>9 800</i>	10 900 17 800	15 700 26 700	18 600 29 500	29 000 <i>51 000</i>	34 600 55 400	58 600 95 900	109 400 176 700
			$P_{\rm N1}$	0,16	0,26	0,49	0,8	0,91	1,5	1,79	2,98	4,93	5,9	9,5 <mark>8</mark>	11,4 8	16,6 13	30,4 <mark>21</mark>
	710	IV 50	P_{N2}	0,11	0,19	0,37	0,61	0,7	1,17	1,39	2,34	3,95	4,7	7,8	9,2	13,9	25,7
			M _{N2} M _{2max}	500 <i>840</i>	860 1 460	1 620 2 700	2 760 <i>4 970</i>	3 150 <i>5 300</i>	5 300 <i>9 500</i>	6 300 10 300	10 600 18 100	17 500 <i>31 000</i>	20 800 33 700	34 900	41 600 66 200	62 600 103 700	115 800 190 600
			$P_{\rm N1}$	0,12	0,22	0,4	0,65	0,77	1,23	1,46	2,3	3,85	4,58	7,4	8,9	14,8	26,7 <mark>21</mark>
	710	V 50	P _{N2} M _{N2}	0,07 312	0,14 610	0,26	0,44	0,52 2 310	0,86 3 800	1,02 4 530	1,66 7 400	2,85 12 700	3,39 15 100	5,7 25 100	6,7 29 900	11,6 51 400	21,3 94 600
			M _{2max}	467	910	1 780	3 480	3 900	6 700	7 300	12 800	23 000	25 000	44 600	48 500	86 300	158 300
	450		$P_{\rm N1}$	0,15	0,27	0,48	0,78	0,93	1,5	1,78 1,5	3,04	4,97	5,9 4,8				24,4
	450	V 32	P _{N2} M _{N2}	0,1 450	0,18 800	0,33 1 470	0,55	0,65 2 930	1,08 4 850	1,29 5 800	2,24 10 100	3,76 16 900	4,48 20 100	7 31 200	8,3 37 200	13,6 61 100	20,3 91 100
		4	M _{2max}	720	1 330	2 440	4 410	4 790	8 300	9 100	16 100	28 500	31 000	53 100	57 700	100 700	149 200
11.0	1 000	N 100	P _{N1}		0,19	0,35	0,56	0,66	1,05	1,25	2,01	3,44	4,09	6,6	7,8	13,2	23,5 18
11,2	1 800	IV 160	$P_{\rm N2}$ $M_{\rm N2}$	-	0,11 620	0,22 1 190	0,36	0,43 2 400	0,71 3 930	0,84 4 680	1,39 7 800	2,44 13 300	2,9 15 900	4,78 26 600	5,7 31 600	9,9 55 000	18,1
			M_{2max}		910	1 790	3 500	3 920	7 100	7 700	13 200	24 500	26 600	46 500	50 500	89 100	163 700
	1 1 2 0	N 100	$P_{\rm N1}$	0,11	0,23	0,41	0,66	0,79	1,27	1,51	2,58	4,34	5,2 4,2			14,810	21
	1 120	IV 100	$P_{\rm N2}$ $M_{\rm N2}$	0,07 384	0,15 830	0,27 1 520	0,45 2 560	0,53 3 030	0,88 5 000	1,05 6 000	1,83 10 500	3,16 17 700	3,76	5,8 32 900	6,8 39 100	11,3 64 600	16,9 96 700
			M_{2max}	610	1 370	2 500	4 600	5 000	8 700	9 500	16 900	30 000	32 500	56 300	61 100	106 300	158 600
	710	IV 63	$P_{\rm N1}$ $P_{\rm N2}$	0,13 0,09	0,26 0,17	0,47 0,32	0,63	0,7 0,53	1,18 0,89	1,36 1,03	2,4 1,85	4 3,13	4,76 3,73	7,6 6	9 7,3 7,2	15 11 12,2	27,3 <mark>18</mark> 22,3
	/ 10		$M_{\rm N2}$	492	960	1 770	2 650	2 970	5 100	5 800	10 500	17 400	20 700	34 000	40 500	68 600	125 900
			M _{2max}	820	1 620	2 950	4 370	4 890	9 000	9 800	17 400	30 900	33 600	60 800	66 000	113 800	202 900
	710	V 63	$P_{ m N1}$ $P_{ m N2}$	_	0,14 0,08	0,26 0,16	0,49 0,31	0,54 0,35	0,93 0.61	1,09 0,72	1,8 1,24	2,9 2,06	3,45 2,45	5,3 3,92	6,4 4,66	10,6 8	19 14,7
			$M_{\rm N2}$		454	900	1 740	1 950	3 430	4 030	6 900	11 500	13 700	21 900	26 100	44 700	82 200
			M _{2max} P _{N1}	0,11	680 0,2	1 340 0,36	2 610 0,62	2 920 0,73	5 400 1,15	6 000 1,36	10 500 2,27	20 600 3,78	23 100 4,5	40 500 7,5	44 000	77 600 13,6 11	143 800 23,8 17
	450	V 40	P_{N2}^{N1}	0,07	0,13	0,23	0,42	0,5	0,8	0,95	1,63	2,75	3,28	5,6	6,7	10,5	18,8
			$M_{\rm N2}$	384 610	700 1 190	1 300 <i>2 300</i>	2 350 <i>4 200</i>	2 790 <i>4 560</i>	4 490 7 900	5 300 <i>8 600</i>	9 200 15 100	15 400 <i>26 700</i>	18 400 <i>29 000</i>	31 500 51 600	37 500	58 600 <i>97 300</i>	105 300 178 200
			M _{2max} P _{N1}	010	0,12	0,23	0,42	4 560 0,47	0.81	0.92	2,19	3,61	4,3	6,6	56 100 7,9 <mark>5,8</mark>		178 200
9	1 800	IV 200	P_{N2}	-	0,12	0,23	0,25	0,47	0,51	0,92	1,53	2,58	3,08	4,84	5,8	9,5	14,1
			$M_{\rm N2}$		464	920 1 340	1 780 <i>2 620</i>	2 000 <i>2 930</i>	3 590 5 400	4 100	11 000 <i>18 000</i>	18 400 <i>32 000</i>	21 900	34 600	41 200	67 900 111 400	101 000
			M _{2max} P _{N1}	0,08	680 0,17	0,31	0,51	0,61	0,96	6 <i>000</i> 1,14	1,91	32000	34 700 3,9	60 200 6,4	65 400 7,6 5,9	11,8 9,3	1
	1 120	IV 125	P_{N2}	0,04	0,1	0,19	0,33	0,4	0,65	0,77	1,32	2,3	2,73	4,64	5,5	8,7	15,7
			M _{N2} M _{2max}	327 469	710	1 340 <i>2 330</i>	2 390 <i>4 290</i>	2 840 4 660	4 620 <i>8 300</i>	5 500 <i>9 000</i>	9 500 15 800	16 100 <i>28 000</i>	19 200 <i>30 400</i>	33 100 54 400	39 400 59 100	62 200 102 400	112 400 183 400
										uty see ch.			1	1 - 1.00	1 30 100		1.00,000

Values in red state nominal thermal power Pt_N (ambient temperature 104°F (40 °C), continuous duty see ch. 4). For *n*, higher than 1 400 rpm or lower than 355 rpm see ch. 6 and page 18. 1) Values given for train of gears **IV** are nominal; see page 18 for effective transmission ratios. 2) M_{2max} represents maximum torque peak the gear reducer will withstand.



Spe	eed									Gear r	educer s	ize					
		Train of	Р [hp]														
n _{N2}	n_1	gears <i>i</i>	М														
rp	m	1)	[I b in] 2)	32	40	50	63	64	80	81	100	125	126	160	161	200	250
9	710	IV 80	P _{N1} P _{N2}	0,11 0,07 483	0,2 0,13 900	0,38 0,25 1 710	0,63 0,42 2 990	0,7 0,48 3 360	1,17 0,81 5 700	1,39 0,96 6 800	2,34 1,67 11 800	3,22 2,48 17 100	3,78 2,91 20 100	5,9 4,59 32 300	6,9 5,4 37 700	11,3 9 63 100	20,6 <mark>17</mark> 16,7 117 400
	450	IV 50	M _{N2} M _{2max} P _{N1}	<i>780</i> 0,11	1 580 0,18	<i>2 890</i> 0,33	5 400 0,56	<i>5 800</i> 0,61	10 000 1,08	10 900 1,23	20 300 2,07	<i>28 000</i> 3,48	31 300 4	56 100 6,7	62 900 7,9 6,2	108 600 11,6	1 98 300 20,8 17
	450	IV 50	P _{N2} M _{N2} M _{2max}	0,07 530 <i>920</i>	0,13 900 1 530	0,24 1 700 <i>2 970</i>	0,42 3 010 5 400	0,46 3 260 5 500	0,82 5 900 <i>10 500</i>	0,93 6 600 11 200	1,59 11 300 <i>19 800</i>	2,73 19 100 <i>34 300</i>	3,13 21 900 <i>37 000</i>	5,3 37 700 <i>67 800</i>	6,3 44 600 73 600	9,5 67 400 108 500	17,3 123 200 <i>201 900</i>
	450	V 50	P _{N1} P _{N2} M _{N2} M _{2max}	0,08 0,05 327 <i>469</i>	0,15 0,09 630 <i>910</i>	0,29 0,18 1 230 <i>1 790</i>	0,46 0,3 2 100 <i>3 500</i>	0,55 0,36 2 490 <i>3 920</i>	0,87 0,58 4 050 <i>7 200</i>	1,03 0,69 4 820 <i>8 000</i>	1,67 1,15 8 100 <i>13 800</i>	2,81 1,99 13 900 <i>25 100</i>	3,34 2,37 16 600 <i>27 300</i>	5,4 3,94 27 600 <i>49 400</i>	6,4 4,69 32 800 <i>53 700</i>	11 8,3 57 800 <i>94 000</i>	19,5 <mark>16</mark> 15 105 300 <i>168 800</i>
7,1	1 800	IV 250	P _{N1} P _{N2} M _{N2} M _{2max}	-	_	_	_	_	_	_	1,61 1,09 9 800 <i>16 400</i>	2,72 1,87 16 600 <i>29 800</i>	3,24 2,22 19 800 <i>32 400</i>	5,4 3,84 34 400 <i>58 000</i>	6,4 5,3 4,58 40 900 <i>63 000</i>	7,4 66 200 107 100	17,8 <mark>13</mark> 13,3 118 600 <i>196 500</i>
	1 120	IV 160	P _{N1} P _{N2} M _{N2} M _{2max}	-	0,13 0,07 650 <i>910</i>	0,25 0,14 1 270 <i>1 790</i>	0,39 0,24 2 190 <i>3 510</i>	0,46 0,29 2 560 <i>3 930</i>	0,74 0,47 4 210 <i>7 200</i>	0,87 0,56 5 000 <i>8 000</i>	1,41 0,93 8 400 <i>14 100</i>	2,44 1,66 14 600 <i>26 300</i>	2,89 1,97 17 300 <i>28 500</i>	4,59 3,2 28 600 <i>50 600</i>	5,5 3,81 34 000 <i>55 000</i>	9,3 6,7 60 000 <i>96 400</i>	16,5 <mark>14</mark> 12,2 109 400 <i>177 600</i>
	710	IV 100	P _{N1} P _{N2} M _{N2} M _{2max}	0,07 0,04 397 <i>620</i>	0,16 0,1 870 <i>1 480</i>	0,29 0,18 1 620 <i>2 700</i>	0,48 0,31 2 800 <i>5 000</i>	0,54 0,35 3 190 <i>5 400</i>	0,89 0,6 5 400 <i>9 700</i>	1,06 0,71 6 400 <i>10 500</i>	1,83 1,25 11 300 <i>18 800</i>	3,02 2,12 18 800 <i>33 300</i>	3,59 2,53 22 400 <i>36 200</i>	5,5 3,99 35 900 <i>64 100</i>	6,6 5,2 4,74 42 800 <i>69 700</i>	7,9 71 000 <i>119 000</i>	14,7 11,6 104 500 <i>165 100</i>
	450	IV 63	P _{N1} P _{N2} M _{N2} M _{2max}	0,09 0,06 520 <i>870</i>	0,18 0,12 1 020 <i>1 730</i>	3 240	0,44 0,32 2 880 <i>4 560</i>	0,47 0,34 3 060 <i>5 100</i>	0,85 0,63 5 600 <i>9 400</i>	0,95 0,71 6 300 <i>10 500</i>	1,63 1,23 11 000 <i>18 400</i>	2,83 2,16 18 900 <i>34 000</i>	3,23 2,47 21 600 <i>36 600</i>	5,3 4,12 36 700 66 000	6,2 4,86 43 200 71 700	10,4 8,2 73 100 <i>126 200</i>	18,5 <mark>14</mark> 14,8 132 000 <i>230 500</i>
	450	V 63	P _{N1} P _{N2} M _{N2} M _{2max}		0,1 0,05 474 <i>680</i>	0,19 0,11 930 <i>1 340</i>	0,34 0,21 1 820 <i>2 620</i>	0,38 0,23 2 040 <i>2 930</i>	0,67 0,42 3 740 5 400	0,75 0,47 4 180 <i>6 000</i>	1,28 0,84 7 400 <i>10 600</i>	2,13 1,44 12 700 <i>20 700</i>	2,54 1,71 15 100 <i>23 200</i>	3,96 2,75 24 300 <i>43 500</i>	4,66 3,24 28 600 48 500	7,7 5,6 49 200 <i>84 300</i>	13,9 10,3 91 100 <i>156 600</i>
5,6	1 800	IV 315	P _{N1} P _{N2} M _{N2} M _{2max}			Ō	D				1,19 0,77 8 600 <i>14 400</i>	2,09 1,39 15 500 <i>27 900</i>	2,4 1,6 17 800 <i>30 300</i>	3,92 2,68 30 000 <i>53 900</i>	4,58 3,14 35 100 <i>58 600</i>	7,9 5,6 62 500 102 800	14 10,2 113 600 <i>185 700</i>
	1 120	IV 200	P _{N1} P _{N2} M _{N2} M _{2max}	-	0,08 0,04 482 <i>680</i>	0,16 0,09 950 <i>1 340</i>	0,28 0,16 1 860 <i>2 620</i>	0,32 0,18 2 080 <i>2 930</i>	0,56 0,34 3 810 <i>5 400</i>	0,63 0,38 4 270 <i>6 000</i>	1,5 1,01 11 600 <i>19 400</i>	2,48 1,7 19 500 <i>34 600</i>	2,91 2 22 900 <i>37 600</i>	4,57 3,24 37 300 <i>66 800</i>	5,4 3,86 44 400 <i>72 500</i>	8,7 7,2 6,4 73 100 <i>126 500</i>	12,2 9,5 108 700 <i>172 400</i>
	710	IV 125	P _{N1} P _{N2} M _{N2} M _{2max}	0,05 0,03 341 <i>481</i>	0,12 0,07 750 <i>1 240</i>		0,37 0,23 2 600 <i>4 680</i>	0,41 0,26 2 890 <i>4 920</i>	0,7 0,45 5 100 <i>9 100</i>	0,8 0,51 5 800 <i>9 800</i>	1,34 0,89 10 100 <i>17 100</i>	2,32 1,56 17 200 <i>31 000</i>	2,74 1,84 20 400 <i>33 700</i>	4,49 3,13 35 300 <i>61 600</i>	5,3 3,72 41 900 <i>66 900</i>	8,5 6,1 68 600 <i>114 100</i>	15 11 11 123 900 <i>205 200</i>
	450	IV 80	P _{N1} P _{N2} M _{N2} M _{2max}	0,07 0,04 499 <i>820</i>	0,14 0,09 960 <i>1 660</i>	0,25 0,16 1 790 <i>3 110</i>	0,44 0,29 3 250 <i>5 800</i>	0,48 0,31 3 490 <i>6 000</i>	0,83 0,55 6 200 <i>10 900</i>	0,95 0,63 7 100 <i>11 900</i>	1,62 1,12 12 500 <i>22 100</i>	2,29 1,72 18 700 <i>29 100</i>	2,58 1,93 21 100 <i>32 600</i>	4,12 3,14 34 900 <i>58 500</i>	4,74 3,62 40 200 65 500	7,9 6,1 67 900 <i>114 200</i>	14,1 11,2 124 100 <i>219 800</i>
4,5	1 120	IV 250	P _{N1} P _{N2} M _{N2} M _{2max}	-	_	_	-	_	_	_	1,11 0,72 10 400 <i>18 000</i>	1,9 1,25 17 900 <i>32 200</i>	2,21 1,45 20 800 <i>35 000</i>	3,66 2,5 35 900 <i>64 000</i>	4,36 2,97 42 700 <i>69 600</i>	7,1 4,94 71 000 121 000	12,3 10 8,9 127 500 <i>218 300</i>
	710	IV 160	P _{N1} P _{N2} M _{N2} M _{2max}	-	0,09 0,05 670 <i>950</i>	0,17 0,1 1 320 <i>1 860</i>	0,28 0,17 2 380 <i>3 640</i>	0,32 0,19 2 630 <i>4 080</i>	0,53 0,33 4 610 <i>7 500</i>	0,61 0,37 5 300 <i>8 400</i>	0,99 0,63 8 900 <i>14 700</i>	1,79 1,16 16 100 <i>28 800</i>	2,07 1,35 18 600 <i>31 500</i>	3,36 2,26 31 800 <i>57 200</i>	3,85 2,58 36 400 <i>62 200</i>	6,6 4,55 64 100 <i>109 300</i>	11,6 8,3 117 000 <i>197 800</i>
	450	IV 100	P _{N1} P _{N2} M _{N2} M _{2max}	0,05 0,03 424 <i>650</i>	0,11 0,06 900 <i>1 550</i>	0,2 0,12 1 680 <i>2 900</i>	0,33 0,21 2 980 <i>5 400</i>	0,37 0,23 3 270 <i>5 400</i>	0,63 0,41 5 800 <i>10 500</i>	0,73 0,47 6 700 <i>11 200</i>	1,27 0,84 11 900 <i>20 400</i>	2,14 1,45 20 300 <i>36 600</i>	2,47 1,67 23 400 <i>39 500</i>	3,9 2,71 38 500 <i>69 400</i>	4,63 3,21 45 700 <i>75 400</i>	7,4 5,3 75 300 <i>131 600</i>	10,4 7,9 112 800 <i>175 600</i>
3,55	1 120	IV 315	P _{N1} P _{N2} M _{N2} M _{2max}	-	_	_	-	_	-	_	0,82 0,51 9 100 <i>14 900</i>	1,46 0,93 16 700 <i>29 300</i>	1,67 1,07 19 100 <i>32 500</i>	2,81 1,84 33 000 <i>59 500</i>	3,23 2,11 38 000 <i>64 600</i>	5,4 3,63 65 300 <i>113 600</i>	9,6 6,7 120 900 <i>209 900</i>

Values in red state nominal thermal power P_{t_N} (ambient temperature 104°F (40 °C), continuous duty see ch. 4). For n_i higher than 1 400 rpm or lower than 355 rpm see ch. 6 and page 18. 1) Values given for train of gears **IV** are nominal; see page 18 for effective transmission ratios. 2) M_{2max} represents maximum torque peak the gear reducer will withstand.



Spe	ed		_							Gear r	educer s	size					
n _{N2}	<i>п</i> 1	Train of gears <i>i</i>	P [hp] M [Ib in]		I	1	1	1	1	1	1	1	1	1		1	
		1)	2)	32	40	50	63	64	80	81	100	125	126	160	161	200	250
3,55	710	IV 200	P _{N1} P _{N2} M _{N2} M _{2max}	_	0,06 0,03 500 <i>710</i>	0,11 0,06 990 <i>1 390</i>	0,2 0,11 1 920 <i>2 710</i>	0,22 0,12 2 150 <i>3 040</i>	0,39 0,22 3 950 <i>5 600</i>	0,43 0,25 4 420 <i>6 200</i>	1,03 0,67 12 100 <i>20 900</i>	1,75 1,16 20 900 <i>37 700</i>	2 1,32 23 900 <i>39 900</i>	3,28 2,24 40 600 <i>73 100</i>	3,77 2,57 46 700 <i>79 000</i>	6,1 4,28 77 500 <i>136 700</i>	8,5 6,4 116 700 <i>178 300</i>
	450	IV 125	P _{N1} P _{N2} M _{N2} M _{2max}	0,04 0,02 352 <i>497</i>	0,08 0,05 800 <i>1 280</i>	0,15 0,08 1 470 <i>2 510</i>	0,26 0,16 2 810 <i>4 900</i>	0,28 0,17 2 990 <i>5 100</i>	0,49 0,31 5 500 <i>9 800</i>	0,56 0,34 6 100 <i>10 400</i>	0,94 0,6 10 700 <i>18 500</i>	1,67 1,08 18 800 <i>33 900</i>	1,89 1,22 21 300 <i>36 200</i>	3,1 2,08 36 900 <i>66 500</i>	3,67 2,46 43 700 <i>72 200</i>	6 4,08 72 600 <i>125 700</i>	10,6 <mark>8,9</mark> 7,4 132 300 <i>231 400</i>
2,8	710	IV 250	P _{N1} P _{N2} M _{N2} M _{2max}	_	_	-	-	_	-	_	0,76 0,48 10 800 <i>19 300</i>	1,36 0,86 19 400 <i>34 900</i>	1,52 0,96 21 700 <i>36 500</i>	2,6 1,71 38 800 <i>68 900</i>	2,98 1,96 44 400 <i>75 200</i>	4,85 3,27 74 200 <i>130 300</i>	8,7 6 136 300 <i>240 200</i>
	450	IV 160	P _{N1} P _{N2} M _{N2} M _{2max}	_	0,06 0,03 700 <i>980</i>	0,12 0,06 1 370 <i>1 930</i>	0,2 0,12 2 560 <i>3 770</i>	0,21 0,12 2 710 <i>4 220</i>	0,38 0,22 4 970 <i>7 700</i>	0,43 0,25 5 600 <i>8 600</i>	0,69 0,42 9 300 <i>15 200</i>	1,28 0,8 17 500 <i>29 800</i>	1,44 0,9 19 600 <i>33 300</i>	2,39 1,54 34 200 <i>61 600</i>	2,74 1,76 39 200 <i>66 700</i>	4,55 3,01 66 800 <i>117 800</i>	8,1 5,6 124 100 <i>218 000</i>
2,24	710	IV 315	P _{N1} P _{N2} M _{N2} M _{2max}	_	_	_	_	_	_	_	0,57 0,34 9 700 <i>15 400</i>	1,04 0,64 18 000 <i>30 300</i>	1,14 0,7 19 700 <i>33 500</i>	2,01 1,26 35 800 <i>63 600</i>	2,29 1,44 40 800 <i>68 500</i>	3,71 2,41 68 300 <i>123 700</i>	6,7 4,51 127 800 <i>226 100</i>
	450	IV 200	P _{N1} P _{N2} M _{N2} M _{2max}	-	0,04 0,02 520 <i>730</i>	0,07 0,04 1 020 <i>1 440</i>	0,13 0,07 1 990 <i>2 800</i>	0,15 0,08 2 220 <i>3 140</i>	0,26 0,15 4 080 <i>5 700</i>	0,3 0,16 4 570 <i>6 400</i>	0,68 0,43 12 300 <i>22 100</i>	1,22 0,79 22 500 <i>40 500</i>	1,31 0,85 24 100 <i>41 000</i>	2,31 1,53 43 700 <i>75 200</i>	2,6 1,72 49 200 <i>81 500</i>	4,22 2,86 81 700 <i>147 100</i>	5,7 4,22 120 700 <i>183 500</i>
1,8	450	IV 250	P _{N1} P _{N2} M _{N2} M _{2max}			-	-	-			0,52 0,32 11 300 <i>20 000</i>	0,95 0,59 20 800 <i>37 500</i>	1 0,62 22 100 <i>37 500</i>	1,81 1,15 41 200 70 800	2,03 1,29 46 200 <i>75 200</i>	3,34 2,16 77 300 <i>139 200</i>	6 4,03 144 100 <i>259 400</i>
1,4	450	IV 315	P _{N1} P _{N2} M _{N2} M _{2max}	-	-	-	-		-	-	0,39 0,23 10 200 <i>15 800</i>	0,7 <mark>2</mark> 0,43 19 100 <i>31 100</i>	0,75 0,45 20 000 <i>34 000</i>	1,39 0,85 37 800 <i>65 400</i>	1,55 0,94 42 300 <i>68 500</i>	2,61 1,64 73 200 <i>128 000</i>	4,69 3,03 135 600 <i>244 000</i>
			_				10.495	(40.90) -	ontinuous c			01100	01000			120 000	

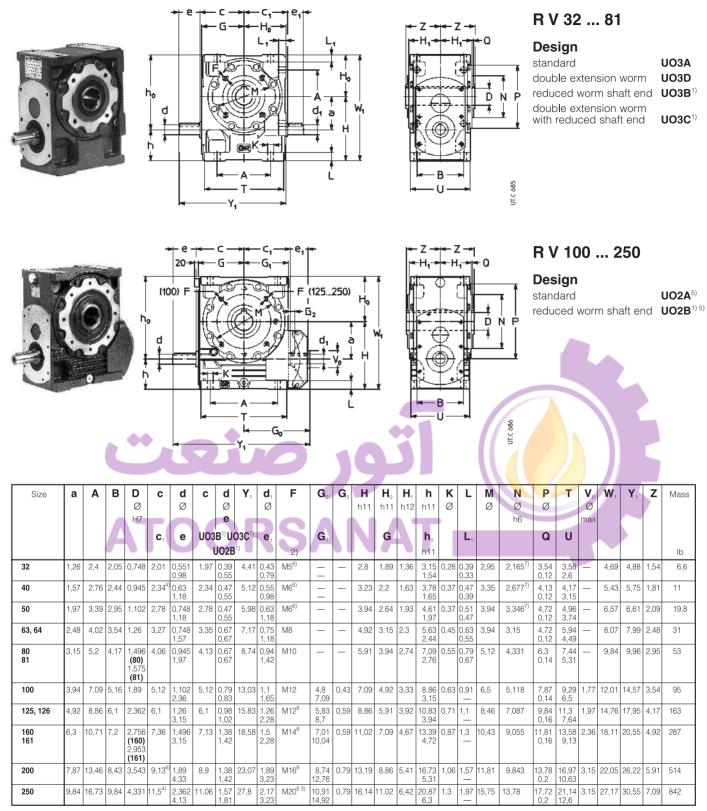
Values in red state nominal thermal power P_{L_n} (ambient temperature 104°F (40 °C), continuous duty see ch. 4). For n_1 higher than 1 400 rpm or lower than 355 rpm see ch. 6 and page 18. 1) Values given for train of gears **IV** are nominal; see page 18 for effective transmission ratios. 2) M_{2max} represents maximum torque peak the gear reducer will withstand.

Summary of transmission ratios *i* and torques valid for $n_1 \le 90$ rpm

 $M_{\rm N2}$ and $M_{\rm 2max}$ are respective nominal and peak torques valid for $n_1 \leq$ **90 rpm**.

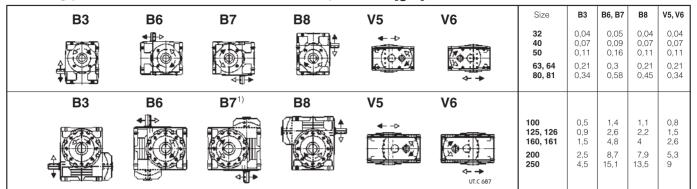
RV															
i	М						(Gear red	lucer size	;					
	lb in	32	40	50	63	64	80	81	100	125	126	160	161	200	250
10	M _{N2} M _{2max}	0,54 <i>0,97</i>	0,99 <i>1,77</i>	1,8 <i>3,25</i>	3,32 6	3,42 6	6,4 <i>11,4</i>	7,1 <i>12</i>	11,7 <i>21,1</i>	20,2 <i>36,4</i>	22,3 <i>37,8</i>	38,4 <i>69</i>	43,7 <i>79</i>	-	-
13	M _{N2} M _{2max}	0,54 <i>0,97</i>	0,99 <i>1,78</i>	1,83 <i>3,3</i>	3,3 <i>5,9</i>	3,4 <i>5,9</i>	6,4 <i>11,6</i>	7,1 <i>12,1</i>	12,3 <i>22,1</i>	21,5 <i>36,3</i>	23,5 <i>39,9</i>	41,4 <i>74</i>	46,9 <i>80</i>	78 1 <i>36</i>	-
16	M _{N2}	0,52	0,95	1,76	3,24	3,32	6,2	6,9	11,8	20,7	22,6	41,1	46,6	73	132
	M _{2max}	<i>0,82</i>	<i>1,59</i>	<i>3,13</i>	<i>5,8</i>	<i>5,8</i>	<i>11,2</i>	<i>11,7</i>	<i>21,3</i>	<i>37,2</i>	<i>38,4</i>	<i>74</i>	<i>79</i>	1 <i>13</i>	<i>210</i>
20	M _{N2}	0,57 ¹⁾	1,03 ¹⁾	1,89 ¹⁾	3,09	3,13	5,9	6,5	11,2	20,5	22,3	39,9	45,1	76	138
	M _{2max}	<i>1,02</i>	<i>1,85</i>	<i>3,4</i>	<i>4,73</i>	<i>5,3</i>	<i>9,7</i>	<i>10,9</i>	<i>19,1</i>	<i>36,8</i>	<i>37,9</i>	<i>72</i>	<i>77</i>	1 <i>38</i>	<i>249</i>
25	M _{N2}	0,55	1	1,84	3,49 ¹⁾	3,6 ¹⁾	6,5 ¹⁾	7,3 ¹⁾	12,9 ¹⁾	19,9	21,4	37,8	42,7	72	133
	M _{2max}	<i>0,96</i>	<i>1,78</i>	<i>3,31</i>	<i>6,3</i>	<i>6,3</i>	<i>11,7</i>	<i>12,4</i>	23,3	<i>30,1</i>	<i>33,8</i>	<i>60</i>	<i>68</i>	118	<i>231</i>
32	M _{N2}	0,52	0,94	1,74	3,2	3,35	6,2	6,9	12,3	21,9 ¹⁾	24 ¹⁾	41,8 ¹⁾	47,4 ¹⁾	79 ¹⁾	119
	M _{2max}	<i>0,87</i>	<i>1,65</i>	<i>3,09</i>	<i>5,8</i>	<i>5,8</i>	11,1	<i>11,6</i>	<i>21,4</i>	<i>39,4</i>	40,8	74	<i>81</i>	144	<i>181</i>
40	M _{N2}	0,47	0,87	1,59	2,97	3,04	5,8	6,4	11	20,3	22	39,9	45,1	76	138 ¹⁾
	M _{2max}	<i>0,68</i>	<i>1,32</i>	<i>2,59</i>	<i>5,1</i>	<i>5,2</i>	<i>10,4</i>	<i>10,5</i>	<i>19,7</i>	<i>36,5</i>	<i>37,4</i>	<i>70</i>	<i>75</i>	1 <i>36</i>	<i>249</i>
50	M _{N2}	0,37	0,72	1,41	2,66	2,76	5,3	5,9	9,9	18,5	19,8	36,8	41,5	70	131
	M _{2max}	<i>0,52</i>	<i>1,01</i>	<i>1,98</i>	<i>3,87</i>	<i>4,34</i>	<i>7,9</i>	<i>8,9</i>	<i>15,6</i>	<i>30,7</i>	<i>33,7</i>	<i>64</i>	<i>69</i>	1 <i>26</i>	<i>236</i>
63	M _{N2} M _{2max}	-	0,53 <i>0,75</i>	1,05 <i>1,48</i>	2,04 <i>2,88</i>	2,27 <i>3,22</i>	4,19 <i>5,9</i>	4,69 <i>6,6</i>	8,2 11,6	16,1 <i>22,7</i>	17,8 <i>25,5</i>	33,5 <i>47,8</i>	37,7 <i>53</i>	63 <i>93</i>	120 <i>182</i>

10

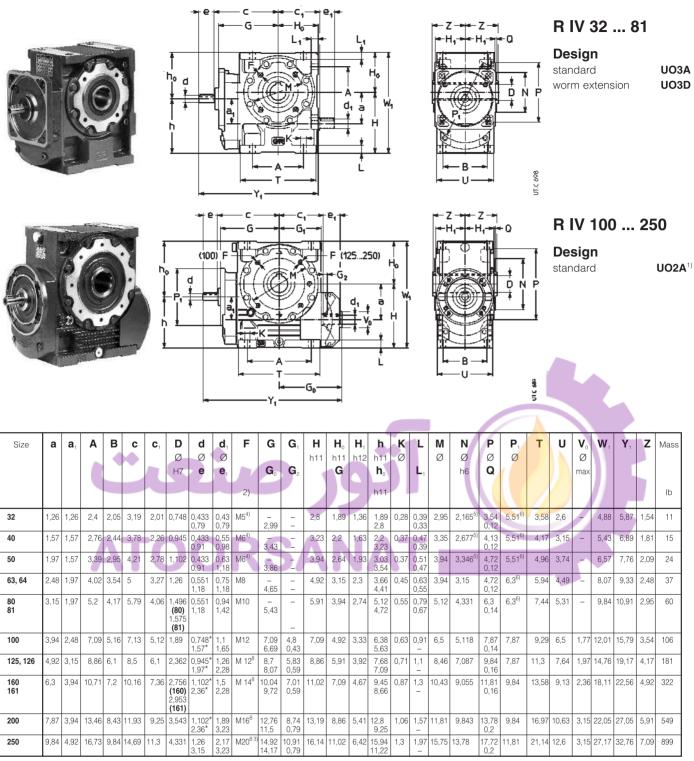

R IV

		Gear	reducer siz	e	_					(Gear r	educe	r size			-	
i _N	32	40, 50, 125, 126	63, 64, 80, 81, 100	160, 161, 200, 250	М					_			Ľ				
	i 2)	<i>i</i> _ 2)	<i>i</i> 2)	<i>i</i> 2)	lb in	32	40	50	63, 64	80	81	100	125, 126	160	161	200	250
50	51,8 2,59	49,9 3,12 ³⁾	50,9 3,18	50,8 3,17	M _{N2} M _{2max}	0,65 <i>1,02</i>	1,15 <i>1,73</i>	2,13 <i>3,33</i>	3,92 <i>6,2</i>	6,9 11,8	7,4 12,2	12,7 <i>22</i> ,1	24,1 <i>40,3</i>	43,1 <i>78</i>	47,8 <i>84</i>	73 122	132 <i>213</i>
63	64,8	62,4	63,6	63,5	M _{N2} M _{2max}	0,63 <i>0,96</i>	1,22 <i>1,89</i>	2,21 <i>3,56</i>	3,63 <i>5,7</i>	6,7 10,5	7,6 11,4	13,4 <i>20,6</i>	24,6 <i>40,1</i>	43,1 <i>78</i>	47,8 <i>81</i>	82 141	152 <i>253</i>
80	82,9	78	79,5	79,3	M _{N2} M _{2max}	0,59 <i>0,88</i>	1,18 <i>1,78</i>	2,16 <i>3,36</i>	4,2 6,5	7,1 11,8	8 12,5	14,2 <i>23,7</i>	23 <i>34</i>	43,1 <i>65</i>	47,8 <i>73</i>	85 127	154 <i>248</i>
100	104	99,8	102	102	M _{N2} M _{2max}	0,51 <i>0,72</i>	1,11 <i>1,65</i>	2,05 <i>3,09</i>	3,83 <i>5,8</i>	6,9 11,3	7,8 11,6	13,7 <i>22,3</i>	26,1 ¹⁾ <i>41,4</i>	44,3 <i>75</i>	49,6 <i>81</i>	89 154	127 <i>197</i>
125	130	125	127	127	M _{N2} M _{2max}	0,39 <i>0,55</i>	1 1,41	1,88 <i>2,76</i>	3,59 <i>5,3</i>	6,6 10,5	7,5 11	12,9 <i>20</i>	24,2 <i>37,9</i>	43,1 <i>73</i>	47,8 <i>75</i>	86 141	159 ¹⁾ <i>269</i>
160	-	156	159	159	M _{N2} M _{2max}	-	0,76 <i>1,07</i>	1,49 <i>2,11</i>	2,92 <i>4,34</i>	6 <i>8,4</i>	6,7 <i>9,4</i>	11,8 <i>16,6</i>	22,3 <i>34,1</i>	43,1 <i>69</i>	47,8 <i>69</i>	82 130	155 <i>245</i>
200	_	197	200	_	M _{N2} M _{2max}	-	0,56 <i>0,79</i>	1,11 <i>1,56</i>	2,34 <i>3,41</i>	4,43 <i>6,2</i>	4,96 7	13,8 <i>22,3</i>	26,6 <i>41,4</i>	44,3 <i>75</i>	49,6 <i>81</i>	89 154	131 <i>203</i>
200	_	203 6,36	204 6,38	204 6,38	M _{N2} M _{2max}	-	0,56 <i>0,79</i>	1,11 <i>1,56</i>	2,34 <i>3,41</i>	4,43 <i>6,2</i>	4,96 7	13,8 <i>22,3</i>	26,6 <i>41,4</i>	44,3 <i>75</i>	49,6 <i>81</i>	89 154	131 <i>203</i>
250	_	254	255	255	M _{N2} M _{2max}	-	-	_	_	-	-	13,3 <i>20</i>	25,6 <i>37,9</i>	43,1 <i>73</i>	47,8 <i>75</i>	86 141	168 <i>277</i>
315	_	318	319	319	M _{N2} M _{2max}	-	-	-	-	-	-	12,1 <i>17,1</i>	23,7 <i>34,1</i>	43,1 <i>69</i>	47,8 <i>6</i> 9	86 1 <i>30</i>	164 <i>245</i>

1) For these transmission ratios (which will transmit higher torques at lower speeds) torque increases further as *n*₁ decreases, as stated in table A ch. 11; for sizes 32 and 40 consult us. 2) Gear ratio of input cylindrical gear pair. 3) For sizes 125 and 126 it is equal to 3,13.

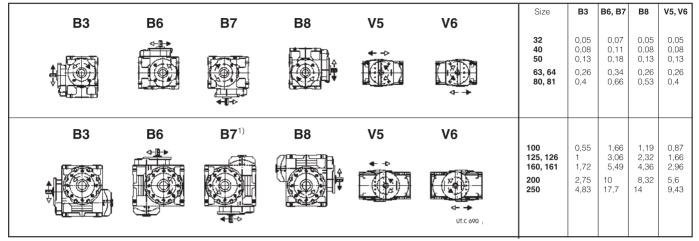


1) Only for $i \ge 16$. 2) Working length of thread $2 \cdot F$ 3) Holes turned through 22° 30' with respect to the drawing. 4) Size 40: $c_1 = 2,26$; size 200: $c_1 = 9,25$; size 250: $c_1 = 11,3$. 5) Prearranged design for double extension worm shaft (see ch. 2). 6) Holes turned through 45° with respect to the drawing. 7) Tolerance 18.



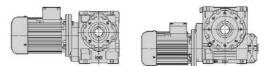
Mounting positions - direction of rotation - and oil quantities [gal]

Unless otherwise stated, gear reducers are supplied in mounting position **B3** (**B3** and **B8** for sizes \leq 64) which, being standard, is **omitted** from the designation. 1) Sizes 200 and 250 in mounting position **B7**, with $n_1 > 710$ rpm carry a price addition.



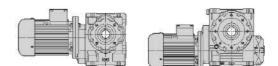
Prearranged design for worm shaft extension (see ch. 2).
 Working length of thread 2 - F.
 Holes turned through 22° 30 with respect to the drawing.
 Holes turned through 45° with respect to the drawing.
 Tolerance t8.

5) Tolerance t8.
 6) Square flange: for dimensions see ch. 16.
 * When i_N ≥ 200 the shaft end will be: size 100: d = 0,65, e = 1,181; sizes 125, 126: d = 0,748, e = 1,575; sizes 160 ... 200: d = 0,945, e = 1,969.

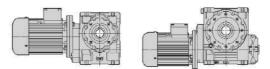


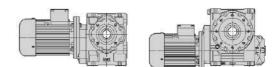
Mounting positions - direction of rotation - and oil quantities [gal]

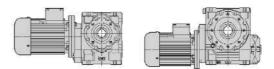
Unless otherwise stated, gear reducers are supplied in mounting position **B3** (**B3** and **B8** for sizes \leq 64) which, being standard, is **omitted** from the designation. 1) Sizes 100 ... 250 in mounting position **B6** carry a price addition.

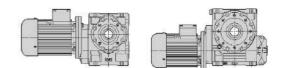


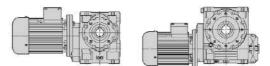
P ₁	n ₂	P_2	<i>M</i> ₂	fs	Gear reducer - motor	i	P ₁	n ₂	P ₂	<i>M</i> ₂	fs	Gear re	educer - motor	i
hp 1)	rpm	hp	lb in		2)		hp 1)	rpm	hp	lb in			2)	
0,12	2,52	0,07	1 712	0,9	MR 2IV 50 - 63 A 6	10,9 x 40	0,16	20,5	0,11	336	1,18	MR IV	32 - 63 A	2,59 x 32
	3,15	0,07	1 448	1,18		10,9 x 32		19,4 21,2	0,11	366 340	2,24	MR IV MR IV	40 - 63 A 32 - 63 B	3,5 x 25 2,59 x 20
	4,03 4,03	0,07 0,08	1 170 1 190	0,85	MR 2IV 40 - 63 A 6 MR 2IV 50 - 63 A 6	10,9 x 25 10,9 x 25		22	0,1	297	1	MR V	32 - 63 B	50
	5,04	0,08	972	1,06	MR 2IV 40 - 63 A 6 MR 2IV 50 - 63 A 6	10,9 x 20 10,9 x 20		22 24,3	0,11	304 302	1,8 2,8	MR V MR IV	40 - 63 B (40 - 63 A 4	
	5,04 4,99	0,08 0,07	988 837	1,9 1,12	MR 2IV 50 - 63 A 6 MR IV 50 - 63 A 6	3,5 x 63		26,2	0,11	276	1,5	MR IV	32 - 63 A	2,59 x 25
	6,19 6,29	0,08 0.07	781 695	1,18 0,95	MR 2IV 40 - 63 A 6 MR IV 40 - 63 A 6	7,11 x 25 3,5 x 50		27,5 27	0,11	250 247	1,32 1,8	MR V MR V		
	6,19	0,08	793	2,24	MR 2IV 50 - 63 A 6	7,11 x 25		27,5 32,8	0,11	255 227	2,36	MR V MR IV	40 - 63 B (32 - 63 A 4	
	6,29 7,74	0,07 0,08	716 647	1,8 1,5	MR IV 50-63A 6 MR 2IV 40-63A 6	3,5 x 50 7,11 x 20		34	0,11	202	1,32	MR V	32 - 63 A	50
	7,86 7,86	0,07 0,08	590 609	1,25 2,24	MR IV 40 - 63 A 6 MR IV 50 - 63 A 6	3,5 x 40 3,5 x 40		34,4 34	0,11 0,11	209 208	1,7 2,36	MR V MR V		
	9,67	0,00	575	1,6	MR 2IV 40 - 63 A 6	7,11 x 16		41 42,5	0,13 0,11	196 169	2	MR IV MR V	32 - 63 A 32 - 63 A	
	9,82 9,82	0,08 0,08	499 511	1,7 3	MR IV 40 - 63 A 6 MR IV 50 - 63 A 6	3,5 x 32 3,5 x 32		44	0,12	170	2,12	MR V	32 - 63 B	3 25
	10,6	0,07	444	0,85	MR IV 32 - 63 A 6	2,59 x 40		42,5 53,1	0,12	173 141	3,15 2,24	MR V MR V		
	12,6	0,08	409	2,12	MR IV 40 - 63 A 6	3,5 x 25		55 68	0,12	140 115	2,65	MR V		5 20
	13,3 15,7	0,08 0,08	374 339	1,18	MR IV 32 - 63 A 6 MR IV 40 - 63 A 6	2,59 x 32 3,5 x 20		85	0,12	94	2,0	MR V MR V		
	17	0,08	308	1,5	MR IV 32 - 63 A 6	2,59 x 25		106	0,13	79	3,75	MR V	32 - 63 A	
	17,5 21,2	0,07 0,09	269 255	1,7 1,8	MR V 40-63A 6 MR IV 32-63A 6	63 2,59 x 20		131	0,14	66 51	4,25	MR V		
	22	0,08	222	1,32	MR V 32 - 63 A 6	50	0.25	170	0,14 0,14	51 4 793	5,3	MR V MR 2IV		
	22 26,5	0,08 0.09	228 221	2,5 2	MR V 40 - 63 A 6 MR IV 32 - 63 A 6	50 2,59 x 16	0,25	1,82 1,82	0,14	4 793	1,12	MR 2IV		5 12,1 x 50 5 12,1 x 50
	27,5	0,08	188	1,8	MR V 32 - 63 A 6	40		2,27	0,15	4 045	1,4	MR 2IV	80 - 71 A	
	34,4 44	0,09 0,09	157 128	2,24 2,8	MR V 32 - 63 A 6 MR V 32 - 63 A 6	32 25		2,27 2,84	0,15	4 045 3 283	1,6 0.95	MR 2IV	81 - 71 A (63 - 71 A (· · ·
0,16	3,15	0,00	1 930	0,9	MR 2IV 50 - 63 B 6	10,9 x 32		2,84 2,84	0,15	3 364 3 364	1,8 2	MR 2IV MR 2IV	80 - 71 A	
	3,89	0,09	1 521	0,95	MR 2IV 50 - 63 A 4	10,9 x 40		3,64		2 691	1,32	MR 2IV	63 - 71 A	
	4,03 4,86	0,1 0,1	1 587 1 282	1,18	MR 2IV 50 - 63 B 6 MR 2IV 50 - 63 A 4	10,9 x 25 10,9 x 32	NΑ	3,64 3,64	0,16	2 745 2 745	2,36	MR 2IV MR 2IV	80 - 71 A 81 - 71 A	
	5,04	0,11	1 317	1,4	MR 2IV 50 - 63 B 6	10,9 x 20		4,35	0,16	2 279	1,5	MR 2IV	63 - 71 A	5 10,1 x 25
	4,99 6,23	0,09 0,1	1 116 1 035	0,85	MR IV 50 - 63 B 6 MR 2IV 40 - 63 A 4	3,5 x 63 10,9 x 25		4,35 4,35		2 321 2 321	2,8 3,15	MR 2IV MR 2IV	80 - 71 A 81 - 71 A	
	6,23 6,29	0,1 0,1	1 051 954	1,7 1,32	MR 2IV 50 - 63 A 4 MR IV 50 - 63 B 6	10,9 x 25 3,5 x 50		4,86 4,59	0,15 0,14	1 923 1 916	0,85	MR 2IV MR IV	50 - 63 B 63 - 71 A	
	7,78	0,11	858	1,18	MR 2IV 40 - 63 A 4	10,9 × 20		4,59	0,14	1 916	1,12	MR IV	64 - 71 A	3 ,8 x 63
	7,86 7,78	0,1 0,11	787 870	0,9	MR IV 40 - 63 B 6 MR 2IV 50 - 63 A 4	3,5 x 40 10,9 x 20		4,59 4,59		1 985 1 985	2 2,24	MR IV MR IV		3 ,8 x 63 3,8 x 63
		0,09	761 811	1,18 1,7		3,5 x 63 3,5 x 40		5,56 5,4	0,15 0,15	1 756 1 791	1 1,6	MR 2IV MR 2IV		7,91 x 25 6,36 x 32
	9,57		688	1,32		7,11 x 25		5,79	0,15	1 625	1,4	MR IV	63 - 71 A 🤇	3 ,8 x 50
	9,71 9,82		629 666	1 1,25	MR IV 40 - 63 A 4 MR IV 40 - 63 B 6	3,5 x 50 3,5 x 32		5,79 5,79		1 625 1 675	1,6 2,65	MR IV MR IV		3 ,8 x 50 3 ,8 x 50
	9,57	0,11	705	2,36	MR 2IV 50 - 63 A 4	7,11 x 25		6,23	0,16	1 577	1,12	MR 2IV		10,9 x 25
	9,71 9,82		648 682	1,9 2,24	MR IV 50 - 63 A 4 MR IV 50 - 63 B 6	3,5 x 50 3,5 x 32		6,95 6,91	0,16	1 455 1 464	1,25	MR 2IV MR 2IV		5 7,91 x 20 6 ,36 x 25
	12 12,1	0,11 0,1	571 531	1,7 1,32	MR 2IV 40 - 63 A 4 MR IV 40 - 63 A 4	7,11 x 20 3,5 x 40		7,24		1 370 1 370	1,8	MR IV MR IV		3 ,8 x 40 3 ,8 x 40
	12,6	0,11	545	1,6	MR IV 40 - 63 B 6	3,5 x 25		7,78	0,16	1 306	1,4	MR 2IV	50 - 63 B	10,9 x 20
	12,1 13,3	0,11 0,1	550 498	2,36	MR IV 50 - 63 A 4 MR IV 32 - 63 B 6	3,5 x 40 2,59 x 32		7,71 8,55		1 142 1 171	0,8	MR IV MR 2IV		3,5 x 63 5,15 x 25
	15	0,12	503	1,7	MR 2IV 40 - 63 A 4	7,11 x 16		8,68	0,15	1 073	1,12	MR IV	50 - 71 A (3 2,54 x 50
	15,2 15,7	0,11 0,11	448 451	1,8 2	MR IV 40 - 63 A 4 MR IV 40 - 63 B 6	3,5 x 32 3,5 x 20		9,05 9,57	0,16	1 137 1 032	2,36	MR IV MR 2IV		3 ,8 x 32 7,11 x 25
	16,4	0,1	400	0,9	MR IV 32 - 63 A 4	2,59 x 40		9,57 9,71	0,16 0,15	1 057 972	1,6 1,25	MR 2IV MR IV	50 - 63 B	7,11 x 25 3,5 x 50
	17 17,5	0,11 0,1	410 359	1,12 1,25	MR V 40 - 63 B 6	63		10,8	0,15	887	0,8	MR IV	40 - 71 A	3 2,54 x 40
	17,5	0,1	371	2,36	MR V 50 - 63 B 6	63		10,7	0,16	970	1,8		50 - 71 A	5,15 x 20

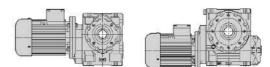

1) Powers valid for continuous duty S1; **increase** possible for S2 ... S10 (see ch. 2b) in which case P₂, M₂ increase and fs decreases proportionately. 2) For complete designation when ordering see ch. 3.


P ₁	n ₂	P_2	M ₂	fs	Gear reducer - motor	i	P ₁	n ₂	P_2	M ₂	fs	Gear re	educer - motor	i
hp	rpm	hp	lb in	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,	hp	rpm	hp	lb in				
1)					2)		1)						2)	
0,25	10,8 10,8	0,16 0,17	909 968	1,4 2,65	MR IV 50 - 71 A 6 MR IV 63 - 71 A 6		0,33	4,39	0,21 0,21	3 024 3 024	1 1,06	MR 2IV MR 2IV		1 '
	12	0,16	856	1,12	MR 2IV 40 - 63 B 4			4,35	0,22	3 165	1,06	MR 2IV	63 - 71 B 6	10,1 x 2
	12,1 12	0,15 0,17	797 875	0,9 2	MR IV 40 - 63 B 4 MR 2IV 50 - 63 B 4	3,5 x 40 7,11 x 20		4,39	0,22 0,22	3 090 3 090	1,9 2,12	MR 2IV MR 2IV		
	12,1	0,16	825	1,6	MR IV 50 - 63 B 4			4,35 4,35	0,22 0,22	3 224 3 224	2 2,24	MR 2IV	80 - 71 B 6 81 - 71 B 6	1 1
	13,6	0,16	746 763	1,06	MR IV 40 - 71 A 6 MR IV 50 - 71 A 6			4,59	0,22	2 661	0.8	MR IV		1 '
	13,6 15	0,16 0,18	755	1,9 1,12	MR IV 50 - 71 A 6 MR 2IV 40 - 63 B 4			4,59 4,59	0,2 0,2	2 757 2 757	1,4 1,6	MR IV MR IV	80 - 71 B 6	1 '
	15,2	0,16	672	1,18	MR IV 40 - 63 B 4	3,5 x 32		5,62	0,22	2 470	1,32	MR 2IV		
	15,2 17,4	0,17 0,17	690 608	2,12	MR IV 50 - 63 B 4 MR IV 40 - 71 A 6			5,62 5,79	0,22 0,21	2 470 2 256	1,4 1	MR 2IV MR IV		12,1 x 2
	17,5	0,15	539	0,85	MR V 40 - 71 A 6	63		5,79	0,21	2 256	1,18	MR IV	64 - 71 B 6	3,8 x 50
	17,4 17,5	0,17 0,15	624 557	2,5 1,6	MR IV 50 - 71 A 6 MR V 50 - 71 A 6	/		5,62	0,22 0,22	2 520 2 520	2,5 2,8	MR 2IV		1 1
	20,5	0,16	504	0,8	MR IV 32 - 63 B 4			5,79	0,21	2 327	1,9	MR IV	80 - 71 B 6	3,8 x 50
	19,4 19,4	0,17 0,17	548 561	1,5 2,65	MR IV 40 - 63 B 4 MR IV 50 - 63 B 4			5,79 6,23	0,21 0,22	2 327 2 190	2,24 0,8	MR IV MR 2IV		
	21,7	0,17	502	1,7	MR IV 40 - 71 A 6	2,54 x 20		6,95	0,22	2 020	0,9	MR 2IV	50 - 71 B 6	7,91x20
	22 21,7	0,16 0,18	456 515	1,18	MR V 40 - 71 A 6			6,72	0,22 0,22	2 093	1,5 1,6	MR 2IV MR 2IV		
	22	0,16	469	2,24	MR V 50 - 71 A 6	50		7,1	0,2	1 807	1	MR IV	63 - 71 A 4	3,8 x 63
	24,3 26,2	0,17	453	1,9 1	MR IV 40 - 63 B 4			7,1	0,2 0,22	1 807 1 903	1,12	MR IV MR IV	63 - 71 B 6	1 1
	20,2	0,17 0,19	414 438	1,8	MR IV 32 - 63 B 4 MR IV 40 - 71 A 6	1 a'a		7,24	0,22 0,21	1 903 1 871	1,5 2	MR IV MR IV		1 1 1 1 1
	27 27,5	0,16 0,17	371 382	1,18 1,6	MR V 40 - 63 B 4 MR V 40 - 71 A 6			7,1	0,21	1 871	2,24	MR IV		
	27	0,16	384	2,24	MR V 50 - 63 B 4	63		7,78	0,22	1 813	1	MR 2IV		
	30,4	0,19	393	2	MR IV 40 - 63 B 4			8,6 8,68	0,22 0,21	1 617	1,06 0,8	MR 2IV MR IV		
	32,8 34	0,18 0,16	341 303	1,25	MR IV 32 - 63 B 4 MR V 32 - 63 B 4			8,35 8,35	0,22 0,22	1 678 1 678	1,6 1,9	MR 2IV MR 2IV		1 1 1 1 1 1 1
	34,4 34	0,17	314 312	1,12	MR V 32 - 71 A * 6 MR V 40 - 63 B 4			8,95	0,22	1 527	1,9	MR IV	63 - 71 A 4	3,8 x 50
	34,4	0,17 0,17	320	1,6 2,12	MR V 40 - 71 A 6	I I		8,95	0,22 0,23	1 527 1 580	1,6 1,7	MR IV MR IV		1 '
	34	0,17	320	2,8	MR V 50 - 63 B 4		ЛТ	9,05	0,23	1 580	2	MR IV	64 - 71 B 6	3,8 x 32
	41 42,5	0,19 0,17	294 254	1,32 1,18	MR IV 32 - 63 B 4 MR V 32 - 63 B 4			9,57 9,71	0,22 0,21	1 468 1 350	1,12	MR 2IV		
	44 42,5	0,18 0,18	255 260	1,4 2,12	MR V 32 - 71 A * 6 MR V 40 - 63 B 4			10,7	0,23	1 340	1,32	MR 2IV	50-71A 4	7,91x20
	44	0,18	259	2,65				10,8 11,2	0,22 0,23	1 263 1 287	1,06 1,8	MR IV		1 '
	53,1 55	0,18 0,18	211 210	1,5 1,8	MR V 32 - 63 B 4 MR V 32 - 71 A * 6			11,2	0,23	1 287	2,12	MR IV	64 - 71 A 4	3,8 x 40
	53,1	0,18	216	2,65		32		12 12,1	0,23 0,22	1 215 1 146	1,4 1,12	MR 2IV MR IV		
	68 68	0,19 0,19	172 174	1,8 3,35	MR V 32 - 63 B 4 MR V 40 - 63 B 4	25 25		13,6	0,22	1 037	0,75	MR IV		
	85	0,19	141	2,36		20		13,2 13,4	0,23 0,22	1 091	1,5 1,12	MR 2IV MR IV		1 /
	106	0,2	119	2,5	MR V 32 - 63 B 4	16		13,6	0,23	1 060	1,4	MR IV	50 - 71 B 6	2,54 x 32
	131	0,2	99	2,8	MR V 32 - 63 B 4	13		14 15,2	0,24 0,22	1 061 933	2,36 0,85	MR IV MR IV		
	170	0,21	77 56	3,55	MR V 32 - 63 B 4	10		15,2	0,23	959	1,5	MR IV	50 - 63 C 4	3,5 x 32
0.22	243	0,21	56	4,25		7		16,8 17,4	0,22 0,23	832 844	0,8 0,95	MR IV MR IV		1 /
0,33	1,82 1,82	0,19 0,19	6 657 6 657	0,8 0,9	MR 2IV 80 - 71 B 6 MR 2IV 81 - 71 B 6	12,1 x 50 12,1 x 50		16,5	0,24	901	1,9	MR 2IV	50 - 71 A 4	5,15 x 20
	2,27	0,2	5 618	1	MR 2IV 80 - 71 B 6	12,1 x 40		16,8 17,4	0,23 0,24	857 867	1,4 1,8	MR IV MR IV	50 - 71 B 6	1 1
	2,27	0,2	5 618	1,12	MR 2IV 81 - 71 B 6	12,1 x 40		17,5 16,7	0,21 0,24	774 907	1,12 2,65	MR V MR IV	50 - 71 B 6	63
	2,81 2,81	0,2	4 422 4 422	1,12 1,25	MR 2IV 80 - 71 A 4 MR 2IV 81 - 71 A 4	12,1 x 50 12,1 x 50		17,5	0,23	817	2	MR V	63 - 71 B 6	63
	2,84	0,21 0,21	4 672 4 672	1,32 1,5	MR 2IV 80 - 71 B 6	12,1 x 32		17,5 19,4	0,23 0,23	817	2,24	MR V		
			3 738	0,95	MR 2IV 81 - 71 B 6 MR 2IV 63 - 71 B 6	12,1 x 32 12,1 x 25		20,6	0,26	762 785	2	MR IV MR 2IV	50 - 71 A 4	5,15 x 10
	3.04						1	1 10 /	0.04	1 700	110	MR IV	50 - 63 C 4	3,5 x 25
	3,64 3,52	0,21	3 725	1,5	MR 2IV 80 - 71 A 4	12,1 x 40		19,4	0,24	780	1,9			
	3,52 3,52 3,64		3 725 3 725 3 812 3 812	1,5 1,6 1,7		12,1 x 40		21 21,7	0,24 0,23 0,24 0,22	780 700 698 634	1,9 1,06 1,25	MR IV MR IV MR IV	40 - 71 A 4	2,54 x 32


P ₁ hp	n ₂ rpm	$P_2^{}$ hp	M ₂ Ib in	fs	Gear reducer - motor	i	P ₁ hp	n ₂ rpm	P_2 hp	M ₂ Ib in	fs	Gear reducer - motor	i
1)					2)		1)					2)	
	21 21,7 22 24,3 24,3 26,8 27 27,5 26,8 27,5 27 26,8 27,5 26,8 27,5 26,8 27,5 26,8 27,5 26,8 27,10 26,8 27,10 26,8 27,10 26,8 27,10 26,100 26,100 26,100 26,100 26,100 26,100 26,100 26,100 26,100 26,100 26,100 26,100 26,100 26,100 26,100 26,100 26,1000	0,24 0,25 0,23 0,24 0,25 0,23 0,24 0,25 0,23 0,24 0,25 0,23 0,25 0,23 0,25 0,23 0,25 0,23 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,26 0,26 0,26 0,26 0,26 0,26 0,26 0,26 0,26 0,26 0,26 0,26 0,27	716 715 652 682 630 643 569 515 531 533 547 557 546 473 436 433 434 455 408 353 355 404 361 360 370 294 292 300 300 300 300 300 300 300 300 294 292 300 300 300 300 300 300 300 300 300 300 300 300 300 300	$\begin{array}{c} 1,9\\ 2,24\\ 1,6\\ 2,65\\ 1,32\\ 2,36\\ 1,32\\ 2,36\\ 1,8\\ 2,36\\ 1,8\\ 2,36\\ 1,6\\ 2\\ 2,65\\ 1,4\\ 0,9\\ 0,8\\ 1,6\\ 1,18\\ 1,5\\ 3\\ 2,12\\ 2,65\\ 1,06\\ 1,8\\ 1,5\\ 1,9\\ 2,65\\ 1,06\\ 1,32\\ 1,9\\ 2,36\\ 1,32\\ 2,5\\ 2,5\\ 1,7\\ 1,7\\ 3\\ 1,8\\ 1,32\\ 2,5\\ 2,5\\ 1,7\\ 1,7\\ 3\\ 1,8\\ 1,32\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 2,54 \times 32 \\ 2,54 \times 20 \\ 50 \\ 50 \\ 3,5 \times 20 \\ 2,54 \times 25 \\ 63 \\ 40 \\ 2,54 \times 25 \\ 63 \\ 40 \\ 2,54 \times 25 \\ 63 \\ 40 \\ 2,54 \times 20 \\ 50 \\ 32 \\ 2,54 \times 20 \\ 32 \\ 2,54 \times 20 \\ 50 \\ 32 \\ 2,54 \times 20 \\ 50 \\ 32 \\ 2,54 \times 20 \\ 32 \\ 2,55 \\$		4,39 4,39 4,39 4,35 4,59 4,59 5,62 5,62 5,62 5,62 5,62 5,62 5,62 5,79 5,79 5,79 5,79 5,79 5,79 5,79 5,79	0,32 0,32 0,32 0,33 0,31 0,334 0,344 0,344 0,344 0,344 0,344 0,344 0,344 0,344 0,344 0,344 0,344 0,344 0,344 0,344 0,344 0,344 0,344 0,345 0,355 0,355<	4 573 4 573 4 881 4 080 4 080 4 232 3 656 3 656 3 339 3 730 3 444 3 444 3 563 3 098 2 674 2 816 2 857 2 887 2 838 2 838 2 857 2 837 2 837	$\begin{array}{c} 1,25\\ 1,5\\ 2,65\\ 0,95\\ 1,06\\ 1,8\\ 0,9\\ 1,7\\ 1,25\\ 1,5\\ 2,36\\ 1\\ 1,12\\ 0,75\\ 0,9\\ 1\\ 1,25\\ 1,5\\ 1,25\\ 1,7\\ 1,25\\ 1,25\\ 1,7\\ 1,25\\ 1,7\\ 1,25\\ 1,7\\ 1,25\\ 1,7\\ 1,25\\ 1,7\\ 1,25\\ 1,7\\ 1,25\\ 1,7\\ 1,22\\ 2,5\\ 1,7\\ 1,22\\ 2,5\\ 1,7\\ 1,22\\ 2,24\\ 1,5\\ 2,24\\ 2,8\\ 1\\ 0,75\\ 2,24\\ 2,8\\ 1\\ 0,75\\ 2,24\\ 2,8\\ 1\\ 0,75\\ 2,24\\ 2,8\\ 1\\ 0,95\\ 1,9\\ 1,9\\ 1,9\\ 1,9\\ 1,9\\ 1,9\\ 1,12\\ 1,12\\ 2,15\\ 1,5\\ 2,24\\ 1\\ 0,75\\ 1,9\\ 1,9\\ 1,9\\ 1,9\\ 1,9\\ 1,9\\ 1,9\\ 1,9$	MR 2IV 80 71 B 4 MR 2IV 81 71 B 4 MR 2IV 80 71 C 6 MR IV 64 71 C 6 MR IV 64 71 C 6 MR IV 64 71 C 6 MR IV 80 71 B 4 MR IV 80 71 C 6 MR IV 80 71 B 4 MR IV 80 71 B 4 MR IV 63 71 C 6 MR IV 64 71 B 4 MR IV 80 71 C 6 MR	$\begin{array}{c} 12,1 \times 32\\ 12,1 \times 32\\ 12,1 \times 32\\ 10,1 \times 25\\ 3,8 \times 63\\ 3,8 \times 63\\ 3,8 \times 63\\ 3,8 \times 50\\ 12,1 \times 25\\ 3,8 \times 50\\ 10,1 \times 25\\ 3,8 \times 50\\ 10,1 \times 25\\ 3,8 \times 40\\ 3,8 \times 40\\ 10,1 \times 25\\ 3,8 \times 40\\ 3,8 \times 40\\ 10,1 \times 25\\ 3,8 \times 40\\ 3,8 \times 50\\ 3,8 \times 32\\ 3,8 \times 40\\ 3,18 \times 32\\ 3,8 \times 32\\ 3$
0.5	243 243	0,3 0,3	77 77	3	MR V 32 - 63 C 4 MR V 32 - 71 A * 4	7 7		14 16,5 16,8	0,36 0,35 0,34	1 617 1 334 1 269	3 1,25 0,95	MR 2IV 50 - 71 B 4 MR IV 50 - 71 B 4	3,8 x 32 5,15 x 20 2,54 x 40
0,5	1,82 2,27 2,81 2,84 2,84 2,84 3,52 3,52 3,52 3,64 3,64 3,64		$\begin{array}{c} 10 \ 128 \\ 8 \ 533 \\ 6 \ 544 \\ 6 \ 544 \\ 6 \ 914 \\ 7 \ 065 \\ 5 \ 514 \\ 5 \ 514 \\ 5 \ 642 \\ 5 \ 642 \\ 5 \ 764 \end{array}$	1 1,32 0,75 0,85 0,9 1 1,7 1,12 1,12 1,18 1,32 2,24	MR 2IV 80 - 71 B 4 MR 2IV 81 - 71 B 4 MR 2IV 80 - 71 C 6 MR 2IV 81 - 71 C 6 MR 2IV 81 - 71 C 6 MR 2IV 100 - 80 A 6 MR 2IV 80 - 71 B 4 MR 2IV 81 - 71 B 4 MR 2IV 80 - 71 C 6	12,1 × 50 12,1 × 40 12,1 × 50 12,1 × 50 12,1 × 32 12,1 × 32 12,1 × 32 12,1 × 40 12,1 × 40 12,1 × 25 12,1 × 25 12,1 × 25		17,4 16,9 16,7 17,5 17,5 17,5 17,5 20,6 21,7 21 21,7	0,35 0,34 0,36 0,33 0,33 0,33 0,33 0,35 0,38 0,36 0,35 0,36	1 283 1 284 1 343 1 343 1 209 1 209 1 209 1 251 1 162 1 033 1 060 1 058	1,18 1,12 1,8 2,12 1,32 1,5 2,5 1,32 1,25 1,25 1,25 1,25 1,25	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,54 × 25 2,03 × 32 3,18 × 32 63 63 63 63 5,15 × 16 2,54 × 20 2,54 × 20 2,54 × 20


P ₁	n ₂	<i>P</i> ₂	<i>M</i> ₂	fs	Gear reducer - motor	i	F	P ₁	n ₂	<i>P</i> ₂	<i>M</i> ₂	fs	Gear reducer - motor	i
hp 1)	rpm	hp	lb in		2)			hp 1)	rpm	hp	lb in		2)	
0,5	21,7 22 21,4 22 22 22 22 26,8	0,36 0,34 0,37 0,35 0,35 0,35 0,35	1 046 964 1 088 1 010 1 010 1 010 843	1,4 1,06 2,36 1,8 1,8 2,12 0,9	MR IV 50 - 80 A 6 MR V 50 - 71 C 6 MR IV 63 - 71 B 4 MR V 63 - 71 C 6 MR V 63 - 71 C 6 MR V 63 - 71 C 6	2,03 x 25 50 3,18 x 25 50 50 50 2,54 x 25),75	5,79 6,72 6,72 6,58 6,58 7,1 7,1	0,5 0,5	5 296 4 729 4 729 4 729 4 729 4 729 4 115 4 115	1,6 1,25 1,5 1,12 1,32 0,9 1	MR IV 100 - 80 B 6 3,8 MR 2IV 80 - 71 C 4 10,1 MR 2IV 80 - 71 C 4 10,1 MR 2IV 80 - 71 C 4 8,08 MR 2IV 81 - 80 A 4 8,08 MR 2IV 81 - 80 A 4 3,8	× 50 × 25 × 25 × 32 × 32 × 63 × 63 × 63
	27,5 26,8 27,1 27 27,5 26,7 27 27 27	0,34 0,37 0,39 0,34 0,35 0,4 0,35 0,35	785 860 914 788 809 940 825 825	0,8 1,6 1,6 1,06 1,4 2,36 1,8 2,12	MR V 40 - 71 C 6 MR IV 50 - 71 B 4 MR IV 50 - 71 C 6 MR V 50 - 71 B 4 MR V 50 - 71 C 6 MR V 50 - 71 C 6 MR V 50 - 71 C 6 MR V 63 - 71 B 4 MR V 63 - 71 B 4 MR V 64 - 71 B 4	40 2,54 x 25 2,54 x 16 63 40 3,18 x 20 63 63			6,88 6,88 6,72 7,1 7,24 8,42 8,42 8,42	0,46 0,46 0,52 0,48 0,51 0,5 0,5	4 249 4 249 4 859 4 288 4 449 3 743 3 743 3 837	0,9 1 2,5 1,7 2,24 0,8 0,9 1,5	MR IV 80 - 80 B 6 2.54 MR IV 81 - 80 B 6 2.54 MR IV 100 - 80 A 4 10.1 MR IV 100 - 80 A 4 3.8 MR IV 100 - 80 B 6 3.8 MR IV 100 - 80 B 6 3.8 MR 2IV 63 - 80 A 4 8.08 MR 2IV 64 - 80 A 4 8.08	× 63 × 63 × 25 × 63 × 40 × 40 × 25 × 25 × 25 × 25
	27,5 27,5 33,5 34 34,4 33,5 33,9 34 34,4	0,37 0,37 0,35 0,36 0,38 0,4 0,35 0,37	841 841 693 641 657 707 741 658 673	2,36 2,36 1,12 0,8 1 2 1,9 1,4 1,8	MR V 63 - 80 A 6	40 40 2,54 × 20 50 32 2,54 × 20 2,03 × 16 50 32			8,42 8,95 8,67 8,67 8,95 10,7 10,7	0,51 0,49 0,49 0,49 0,49 0,51 0,51	3 837 3 469 3 469 3 581 3 581 3 588 3 001 3 001	1,3 1,8 1,18 1,4 1,12 1,32 2,24 0,95 1,12	MR 2IV 81 - 80 A 4 8,08 MR IV 80 - 71 C 4 3,8 MR IV 81 - 71 C 4 3,8 MR IV 81 - 71 C 4 3,8 MR IV 80 - 80 B 6 2,54 MR IV 81 - 80 B 6 2,54 MR IV 81 - 80 B 6 2,54 MR IV 100 - 80 A 4 3,8 MR IV 100 - 80 A 4 3,8 MR IV 100 - 80 A 4 3,8	x 25 x 50 x 50 x 50 x 50 x 50 x 50 x 50 x 5
	34 41,9 42,5 44 41,9 42,5 44 41,9 42,5 44 42,5	0,37 0,4 0,36 0,37 0,4 0,37 0,38 0,38	685 598 534 532 607 548 544 567	1,0 2,36 1,18 1 1,32 2,24 1,8 2,24 3	MR V 63 - 71 B 4 MR IV 40 - 71 B 4 MR V 40 - 71 B 4 MR V 40 - 71 B 4 MR V 40 - 71 C 6 MR IV 50 - 71 B 4 MR V 50 - 71 B 4	50 2,54 x 16 40 25 2,54 x 16 40 25 40		Π	10,5 10,5 11,2 11,2 10,8 10,8 10,5 10,5 11,2	0,5 0,5 0,5 0,5 0,5 0,51 0,51 0,52	2 993 2 993 2 831 2 831 2 923 2 923 3 082 3 082 2 906	0,85 1 0,85 1 0,8 0,95 1,6 1,9 1,5	MR 2IV 64 - 80 A 4 5,08 MR IV 63 - 71 C 4 3,8 MR IV 64 - 71 C 4 3,8 MR IV 63 - 80 B 6 2,54 MR IV 64 - 80 B 6 2,54 MR IV 64 - 80 B 6 2,54 MR IV 64 - 80 B 6 2,54 MR 2IV 80 - 80 A 4 5,08	3 x 32 3 x 32 x 40 x 40 x 40 x 40 x 40 x 40 x 40 x 40 x 32 x 32 x 32 x 40 x 40
	53,1 55 53,1 55 53,1 55 68	0,37 0,38 0,37 0,38 0,38 0,39 0,38	435 432 445 437 454 447 354	0,71 0,9 1,32 1,6 2,24 2,8 0,9	MR V 40 - 71 C 6	32 20 32 20 32 20 20 25	A		11,2 10,6 10,6 10,8 10,8 11,2 13,4	0,52 0,49 0,49 0,52 0,52 0,52 0,53 0,52	2 906 2 891 2 891 3 000 3 000 2 990 2 437	1,8 1,18 1,4 1,5 1,8 3 1,12	MR IV 81 - 71 C 4 3,8 MR IV 80 - 80 A 4 2,54 MR IV 81 - 80 A 4 2,54 MR IV 81 - 80 A 4 2,54 MR IV 80 - 80 B 6 2,54 MR IV 80 - 80 B 6 2,54 MR IV 81 - 80 B 6 2,54 MR IV 81 - 80 B 6 2,54 MR IV 81 - 80 B 6 2,54 MR IV 80 - 80 B 6 3,8	x 40 x 63 x 63 x 63 x 40 x 40 x 40 x 40 x 40 x 25
	68 68 85 85 106	0,39 0,39 0,39 0,4 0,41	359 365 290 293 245	1,7 3 1,12 2 1,18	MR V 40 - 71 B 4 MR V 50 - 71 B 4 MR V 32 - 71 B 4	25 25 20 20 16			13,4 14 14 13,4 13,4 13,5	0,52 0,52 0,52 0,5 0,5 0,5 0,52	2 437 2 334 2 334 2 355 2 355 2 355 2 410	1,32 1,06 1,25 0,85 1 1	MR 2IV 64 - 80 A 4 5,08 MR IV 63 - 71 C 4 3,8 MR IV 64 - 71 C 4 3,8 MR IV 63 - 80 A 4 2,54 MR IV 63 - 80 A 4 2,54 MR IV 64 - 80 A 4 2,54	3 x 25 x 32 x 32 x 32 x 50 x 50 x 50 x 32
	106 131 131 170 170 243	0,42 0,42 0,43 0,43 0,43	248 203 205 158 160 114	2,12 1,4 2,5 1,7 3 2	MR V 32 - 71 B * 4 MR V 40 - 71 B 4 MR V 32 - 71 B * 4	16 13 13 10 10 7			13,5 13,4 13,4 14 14 13,4 13,4	0,52 0,53 0,53 0,53 0,53 0,51 0,51	2 410 2 500 2 500 2 403 2 403 2 422 2 422 2 422	1,18 2,12 2,5 2 2,36 1,6 1,9	MR 2IV 80 - 80 A 4 5,08 MR 2IV 81 - 80 A 4 5,08 MR IV 80 - 71 C 4 3,8 MR IV 81 - 71 C 4 3,8 MR IV 80 - 80 A 4 2,54	× 32 × 25 × 25 × 32 × 32 × 32 × 50 × 50
0,75	243 2,27 2,81 2,84	0,44 0,46 0,45 0,47	115 12 684 10 003 10 502	3,75 0,85 0,95 1,18	MR 2IV 100 - 80 B 6 MR 2IV 100 - 80 A 4	7 12,1 x 40 12,1 x 50 12,1 x 32			13,5 13,5 16,7 16,7	0,53 0,53 0,53 0,53	2 481 2 481 1 996 1 996	2 2,36 1,18 1,4	MR IV 80 - 80 B 6 2.54 MR IV 81 - 80 B 6 2.54 MR IV 63 - 71 C 4 3.18 MR IV 64 - 71 C 4 3.18	+ x 32 + x 32 3 x 32 3 x 32 3 x 32
	3,52 3,64 4,39 4,39 4,39 4,39 4,35	0,47 0,47 0,49 0,5	8 425 8 568 6 798 6 798 6 977 7 255	1,25 1,5 0,85 1 1,7 1,8	MR 2IV 100 - 80 B 6 MR 2IV 80 - 71 C 4 MR 2IV 81 - 71 C 4 MR 2IV 100 - 80 A 4 MR 2IV 100 - 80 B 6	12,1 x 40 12,1 x 25 12,1 x 32 12,1 x 32 12,1 x 32 12,1 x 32 10,1 x 25			16,7 16,7 17,3 17,3 17,5 17,5 16,7	0,52 0,52 0,54 0,54 0,5 0,5 0,5	1 967 1 967 1 958 1 958 1 797 1 797 2 048	1,12 1,32 1,32 1,6 0,9 1,06 2,24	MR IV 64 - 80 A 4 2,54 MR IV 63 - 80 B 6 2,54 MR IV 64 - 80 B 6 2,54 MR IV 64 - 80 B 6 2,54 MR V 63 - 80 B 6 6 MR V 64 - 80 B 6 6	
	4,59 5,62 5,62 5,26 5,26 5,26 5,62	0,49 0,49 0,47 0,47	6 291 5 544 5 544 5 681 5 681 5 708	1,18 1,12 1,25 0,9 1 2,24	MR 2IV 80 - 71 C 4 MR 2IV 81 - 71 C 4 MR 2IV 80 - 80 A 4 MR 2IV 81 - 80 A 4	3,8 × 63 12,1 × 25 12,1 × 25 8,08 × 40 8,08 × 40 12,1 × 25			16,7 16,7 16,7 17,5 17,5 21	0,54 0,54 0,54 0,52 0,52 0,52	2 048 2 019 2 019 1 860 1 860 1 576	2,65 2,12 2,5 1,7 2 0,85	MR IV 81 - 71 C 4 3,18 MR IV 80 - 80 A 4 2,54 MR IV 81 - 80 A 4 2,54 MR IV 81 - 80 B 6 6 MR V 80 - 80 B 6 6	3 x 32 4 x 40 4 x 40 3


P ₁ hp	n ₂ rpm	P ₂ hp	M ₂ Ib in	fs	Gear reducer - motor	i	P ₁ hp	n ₂ rpm	P ₂ hp	M ₂ Ib in	fs	Gear	reduce	r - mot	tor	i
1) 0,75	21,7	0,53	1 555	0,95		· · · · · · · · · · · · · · · · · · ·	1) 0,75	85	0,6	444	2,36	MR		71 C	4	20
	21,4 21,4 20,9 20,9	0,55 0,55 0,54 0,54	1 618 1 618 1 621 1 621	1,6 1,9 1,4 1,7	MR IV 63 - 71 C 4 MR IV 64 - 71 C 4 MR IV 63 - 80 A 4 MR IV 64 - 80 A 4	3,18 x 25 2,54 x 32		85 106 106 106	0,6 0,61 0,62 0,62	444 364 368 368	2,36 0,8 1,5 1,5	MR MR MR MR	V 32 - V 40 -	71 C	4 * 4 4 * 4	20 16 16 16
	22 22 21,4	0,52 0,52 0,56	1 501 1 501 1 654	1,18 1,4 3	MR V 63 - 80 B 6 MR V 64 - 80 B 6 MR IV 80 - 71 C 4	50		106 106	0,63 0,63	373 373	2,5 2,5	MR MR	V 50-	71 C 80 A	4 4	16 16
	21,4 21,4 20,9	0,56 0,55	1 654 1 668	3,55 2,65	MR IV 81 - 71 C 4 MR IV 80 - 80 A 4	3,18 x 25		131 131	0,63 0,63	302 304	0,95	MR MR	V 40-	71 C	* 4 4	13 13
	20,9 22 22	0,55 0,54 0,54	1 668 1 549 1 549	3,15 2,24 2,65	MR V 80 - 80 B 6	50		131 131 131	0,63 0,64 0,64	304 307 307	1,7 3 3	MR MR MR		80 A 71 C 80 A	* 4 4 4	13 13 13
	26,8 26,2	0,54 0,53	1 279 1 286	1,12		2,54 x 25		170 170	0,63 0,64	235 238	1,12 2	MR MR	V 40-	71 C	* 4 4	10 10
	27,1 27,5	0,55 0,52	1 279 1 202	1,18 0,95	MR IV 50-80B 6 MR V 50-80B 6	2,03 × 20 40		170 243	0,64 0,65	238 170	2	MR MR	V 32 -		* 4	10 7
	26,7 26,7 26,8	0,59 0,59 0,56	1 397 1 397 1 312	1,6 1,9 1,8	MR IV 63 - 71 C 4 MR IV 64 - 71 C 4 MR IV 63 - 80 A 4	3,18 x 20		243 243	0,66 0,66	171 171	2,5 2,5	MR MR	V 40-	71 C 80 A	4 * 4	7 7
	26,8 27	0,56 0,52	1 312 1 226	2,12	MR IV 64 - 80 A 4 MR V 63 - 71 C 4	2,54 x 25 63	1	1,83 2,29	0,61 0,63	21 019 17 299	0,9 1,18		IV 125 - IV 125 -		6 6	12 x 5 12 x 4
	27 27 27	0,52 0,52 0,52	1 226 1 226 1 226	1,4 1,18 1,4	MR V 64 - 71 C 4 MR V 63 - 80 A 4 MR V 64 - 80 A 4	63		2,84 2,86	0,65 0,66	14 321 14 507	0,85 1,5	MR 2	IV 100 - IV 125 -	90 S	6 6	12,1 x 3 12 x 3
	27,5 27,5	0,55 0,55	1 250 1 250	1,6 1,9	MR V 63 - 80 B 6 MR V 64 - 80 B 6	40 40		3,52 3,64	0,64 0,67	11 489 11 684	0,95	MR 2	IV 100 - IV 100 -	80 C	4	12,1 x 4 12,1 x 2
	27 27	0,54 0,54	1 265 1 265	2,24 2,65	MR V 81-80A 4	63		3,53 3,53 4,39	0,67 0,67 0,66	11 939 11 939 9 514	1,8 2 1,25	MR 2	IV 125 - IV 126 - IV 100 -	90 S	6 6 4	9,75 x 3 9,75 x 3 12,1 x 3
0,6	33,5 33,5	0,55 0,56	1 031 1 051	0,75	MR IV 50 - 71 C 4	2,54 x 20		4,34	0,66 0,66	9 621 9 621	1,23 1,9 2,12	MR 2	V 125 - V 126 -	90 S	- 6 6	6,34 x 4 6,34 x 4
	33,5 34 34	0,55 0,53 0,53	1 042 978 978	1,25 0,95 0,95	MR V 50 - 71 C 4	1		4,53 4,53	0,65 0,65	9 042 9 042	1,6 1,8	MR	IV 125 - IV 126 -	90 S	6 6	3,86 x 6
	34,4 33,4	0,55 0,6	1 000 1 137	1,18 2	MR V 50-80B 6 MR IV 63-71C 4	32 3,18 x 16		4,59 5,45	0,63 0,67	8 578 7 805	0,9 0,9	MR 2	IV 100 - IV 81 -	80 C	6	· · ·
	33,4 33,5 33,5	0,6 0,6 0,6	1 137 1 127 1 127	2,5 1,9 2,24	MR IV 64 - 71 C 4 MR IV 63 - 80 A 4 MR IV 64 - 80 A 4	2,54 x 20		5,62 5,79 5,7	0,69 0,66 0,68	7 784 7 222 7 565	1,6 1,18 2	MR	IV 100 - IV 100 - IV 125 -	80 C	4 6 6	12,1 x 2 3,8 x 5 3,86 x 5
	34 34	0,55 0,55	1 018 1 018	1,6 1,9	MR V 63 - 71 C 4 MR V 64 - 71 C 4	50 50		5,7 6,58	0,68 0,67	7 565 6 449	2,36	MR	IV 126 - IV 80 -	90 S	6 4	3,86 x 50 8,08 x 3
	34 34 34,4	0,55 0,55 0,56	1 018 1 018 1 030	1,6 1,9 2	MR V 63 - 80 A 4 MR V 64 - 80 A 4 MR V 63 - 80 B 6	50		6,58 6,72	0,67 0,71	6 449 6 626	1 1,8	MR 2	IV 81 - IV 100 -	80 B	4	8,08 x 3 10,1 x 2
	34,4 41,9	0,56 0,59	1 030 888	2,36		32		7,1 7,24 7,13		5 848 6 067 6 222	1,25 1,6 2,65	MR	IV 100 - IV 100 - IV 125 -	80 C	4 6 6	3,8 x 63 3,8 x 40 3,86 x 40
	44 [°] 41,9	0,55 0,6	791 902	0,85	MR V 40 - 80 B * 6 MR IV 50 - 71 C 4	25 2,54 x 16		8,42 8,42	0,7	5 233 5 233	1,12	MR 2	IV 80-	80 B 80 B	4 4	8,08 x 2 8,08 x 2
	41,9 42,5 42,5	0,57 0,55 0,55	856 815 815	1,5 1,18 1,18		40		8,67 8,67	0,67	4 884 4 884	0,85	MR	IV 81-		6	2,54 x 50 2,54 x 50
	44 41,9	0,56 0,61	809 917	1,5 2,36	MR V 50 - 80 B 6 MR IV 63 - 80 A 4	25 2,54 x 16		8,35 8,95 9,05	0,7 0,69 0,72	5 310 4 893 5 000	2,12 1,6 2,24	MR	IV 100 - IV 100 - IV 100 -	80 B	4 4 6	6,36 × 32 3,8 × 50 3,8 × 32
	42,5 42,5	0,57 0,57	844 844	22	MR V 63 - 71 C 4 MR V 63 - 80 A 4	40		10,5 10,5	0,7 0,7	4 203 4 203	1,18 1,4	MR 2		80 B	4 4	5,08 x 3 5,08 x 3
	53,1 55 52,3	0,56 0,57 0,61	661 650 730	0,9 1,06 1,7	MR V 40 - 71 C 4 MR V 40 - 80 B * 6 MR IV 50 - 80 A 4			10,6 10,6	0,66 0,66	3 943 3 943	0,85	MR MR	IV 80- IV 81-	80 B 80 B	4	2,54 x 60 2,54 x 60 2,54 x 40
	53,1 53,1	0,57 0,57	675 675	1,5 1,5	MR V 50 - 71 C 4 MR V 50 - 80 A 4	32 32		10,8 10,8 11,2	0,7 0,7 0,72	4 091 4 091 4 077	1,12 1,32 2,24	MR		80 C 80 C 80 B	6 6 4	2,54 x 40 2,54 x 40 3,8 x 40
	55 53,1	0,58 0,58	664 692	1,9 2,5	MR V 50 - 80 B 6 MR V 63 - 80 A 4	32		13,4 13,4	0,71 0,71	3 323 3 323	0,8 0,95	MR 2	IV 63-	80 B 80 B	4 4	5,08 x 2 5,08 x 2
	68 68 68 68	0,58 0,58 0,59 0,59	533 533 543 543	1,12 1,12 2 2	MR V 40 - 71 C 4 MR V 40 - 80 A * 4 MR V 50 - 71 C 4 MR V 50 - 80 A 4	25		13,5 13,5 13,4	0,71 0,71 0,72	3 286 3 286 3 409	0,75 0,9 1,6	MR MR MR 2	IV 63 - IV 64 - IV 80 -	80 C 80 C 80 B	6 6 4	2,54 x 3 2,54 x 3 5,08 x 2
	85 85 85	0,58 0,59 0,59	431 436 436	0,75 1,32 1,32	MR V 32 - 71 C * 4 MR V 40 - 71 C 4	20 20		13,4 13,4 13,4 13,5	0,72 0,7 0,7 0,73	3 409 3 303 3 303 3 383	1,9 1,18 1,4 1,4	MR MR	IV 80-	80 B 80 B 80 B 80 C	4 4 6	5,08 x 2 2,54 x 5 2,54 x 5 2,54 x 3


P ₁ hp	n ₂ rpm	P ₂ hp	M ₂ Ib in	fs	Gea	r reduce	r - motor	i		P		n ₂ rpm	P_2 hp	M ₂ Ib in	fs	Gea	r reduce	er - mot	tor	i
1)						2)				1							2)			
1	13,5 14 16,7 16,7 17,3	0,73 0,74 0,71 0,71 0,73	3 383 3 350 2 683 2 683 2 670	1,7 3 0,8 0,95 1	MR MR MR MR MR	IV 64 - IV 63 -	80 B 4 80 B 4 80 B 4 80 C 6	2,54 × 32 3,8 × 32 2,54 × 40 2,54 × 40 2,54 × 25		1	0,73		0,79 0,79 0,79 0,79 0,79	1 131 1 131 1 131 1 174 887	2,24 1,9 2,24 2,65 0,75	MR MR MR MR MR	V 63 V 64 V 80 V 40	80 C 90 S 90 S 80 B 80 C	6 6 4 * 6	25 25 25 40 20
	17,3 17,2 17,5 17,5 16,7 16,7	0,73 0,72 0,68 0,68 0,73 0,73	2 670 2 644 2 450 2 450 2 753 2 753	1,18 0,9 0,75 0,75 1,5 1,8	MR MR MR MR MR	IV 63 - V 64 - V 64 - IV 80 - IV 81 -	80 C 6 90 S 6 80 C 6 90 S 6 80 B 4 80 B 4	2,54 × 25 2 × 32 63 63 2,54 × 40 2,54 × 40			0,84	52,3 53,1 55 53,1 53,1 68	0,83 0,78 0,79 0,79 0,79 0,79	996 920 905 943 943 727	1,25 1,12 1,32 1,8 2,12 0,8	MR MR MR MR MR MR	V 50 V 50 V 63 V 64	80 B 80 B 80 C 80 C 80 B 80 B 80 B	4 4 6 4 4 * 4	2,03 x 16 32 20 32 32 32 25
	17,3 17,3 17,5 17,5 17,5 20,9	0,75 0,75 0,7 0,7 0,73 0,73	2 737 2 737 2 537 2 537 2 537 2 628 2 211	1,9 2,24 1,25 1,5 2,36	MR MR MR MR MR MR	IV 81 - V 80 - V 81 - V 100 -	80 C 6 80 C 6 90 S 6 90 S 6 90 S 6 80 B 4	2,54 × 25 2,54 × 25 63 63 63 2,54 × 32				68 68 85 85 85	0,8 0,82 0,8 0,82 0,82 0,86	741 756 594 605 636	1,4 2,36 1 1,7 2,5	MR MR MR MR MR	V 50 V 63 V 40 V 50	80 B 80 B 80 B 80 B 80 B 80 B	4 4 * 4 4 4	25 25 20 20 20 20
	20,9 22 22 22 22 22 22 22	0,73 0,75 0,75 0,71 0,71 0,71	2 211 2 143 2 143 2 047 2 047 2 047 2 047	1,25 1,18 1,4 0,85 1,06 0,85	MR MR MR MR MR MR	IV 64 - IV 63 - IV 64 - V 63 - V 64 -	80 B 4 90 S 6 90 S 6 80 C 6 80 C 6 90 S 6	2,54 × 32 2 × 25 2 × 25 50 50 50				106 106 106 131 131	0,85 0,86 0,87 0,86 0,87	502 509 516 415 419	1,06 1,9 3,15 1,18 2,12	MR MR MR MR	V 50 V 63 V 40 V 50	80 B 80 B 80 B 80 B 80 B 80 B	4	16 16 13 13
	22 20,9 20,9 22 22 22 22	0,71 0,76 0,76 0,76 0,76 0,74 0,74	2 047 2 274 2 274 2 191 2 113 2 113	1,06 1,9 2,36 2,24 1,6 2	MR MR MR MR MR MR	V 64 - IV 80 - IV 81 - IV 80 -	90 S 6 80 B 4 80 B 4 90 S 6 90 S 6	50 2,54 x 32 2,54 x 32 2 x 25 50 50		1,5		170 170 243 243 2,29	0,87 0,88 0,9 0,9 0,92	324 327 233 235 25 372	1,5 2,65 1,8 3,35 0,85	MR MR MR MR	V 40	80 B 80 B 80 B	* 4 * 4 4 6	10 10 7 7 12 x 40
0,84	22 27,1 26,8 26,8 27	0,76 0,75 0,76 0,76 0,72	2 175 1 744 1 789 1 789 1 672	3 0,85 1,32 1,6 0,9	MR MR MR MR	V 100 - IV 50 - IV 63 - IV 64 - V 63 -	90 S 6 80 C 6 80 B 4 80 B 4 80 B 4	50 2,03 × 20 2,54 × 25 2,54 × 25 63				3,53	0,92 0,96 0,96 0,95	20 546 20 546 21 277 21 277 16 990	0,85 0,95 1 1,12 1,12	MR MR MR MR	2IV 125 · 2IV 126 · 2IV 125 · 2IV 126 · 2IV 126 ·	90 S 90 L 90 L 90 S	4 6 6 4	12 x 50 12 x 50 12 x 32 12 x 32 12 x 32 12 x 40
	27 27,5 27,5 27,5 27,5 26,8	0,72 0,74 0,74 0,74 0,74 0,74	1 672 1 705 1 705 1 705 1 705 1 833	1,06 1,12 1,4 1,12 1,4 2,5	MR MR MR MR MR MR	V 63 - V 64 - V 63 - V 64 -	80 B 4 80 C 6 80 C 6 90 S 6 90 S 6 80 B 4	63 40 40 40 40 2,54 × 25	4	Γ	Γ	3,53 3,53 4,39 4,41 4,41 4,53	0,98 0,97 1 1	16 990 17 510 13 954 14 272 14 272 13 262	1,25 1,18 0,85 1,4 1,6 1,06	MR MR MR	2IV 126 · 2IV 125 · 2IV 100 · 2IV 125 · 2IV 125 · 2IV 126 · IV 125 ·	90 L 80 C 90 S 90 S	4 6 4 4 6	12 x 40 9,75 x 32 12,1 x 32 12 x 32 12 x 32 3,86 x 63
	26,8 27 27 27,5 27,5 27,5 33,5	0,78 0,74 0,74 0,76 0,76 0,76	1 833 1 724 1 724 1 753 1 753 1 421	3 1,7 2 2,12 2,5 0,95	MR MR MR MR MR MR	V 80 - V 81 - V 80 -	80 B 4 80 B 4 80 B 4 90 S 6 90 S 6 80 B 4	2,54 × 25 63 63 40 40 2,03 × 25				4,53 5,62 5,45 5,45 5,7 5,7 5,7	0,95 1,02 1,01	13 262 11 416 11 741 11 741 11 095 11 095	1,18 1,12 1,7 2 1,4 1,6	MR MR MR MR MR	IV 126 · 2IV 100 · 2IV 125 · 2IV 126 · IV 125 ·	90 L 80 C 90 S 90 S	6 4 4 6 6	3,86 × 63 12,1 × 25 9,75 × 32 9,75 × 32 3,86 × 50 3,86 × 50
	34,4 33,5 33,5 34,4 34,4 34 34 34,4 34,4	0,74 0,82 0,82 0,82 0,75 0,75 0,75 0,77 0,77	1 364 1 537 1 537 1 506 1 506 1 388 1 388 1 404 1 404 1 404	0,85 1,4 1,6 1,5 1,8 1,12 1,4 1,4 1,7 1,4	MR MR MR MR MR MR MR MR MR	V 50 - IV 63 - IV 64 - IV 63 - IV 64 - V 63 - V 64 - V 63 - V 64 - V 63 - V 64 - V 63 - V 64 -	80 C 6 80 B 4 90 S 6 90 S 6 80 B 4 80 B 4 80 B 4 80 C 6 80 C 6 90 S 6	32 2,54 × 20 2,54 × 20 2 × 16 2 × 16 50 50 32 32 32 32				6,72 6,58 7,1 6,88 6,7 6,7 7 7 7 7,13	1,04 1,01 0,97	9 719 9 665 8 577 8 855 9 515 9 515 8 973 8 973 9 126 9 126	1,0 1,25 1,18 0,85 0,85 1,7 2,12 1,4 1,7 1,8 2,12	MR MR MR MR MR	2IV 120 2IV 100 IV 100 IV 100 2IV 125 2IV 125 IV 125 IV 125 IV 125 IV 125	80 C 90 S 80 C 90 L 90 S 90 S 90 S 90 S 90 S 90 L	0 4 4 4 6 6 4 4 4 6 6	3,80 × 30 10,1 × 25 8,08 × 32 3,8 × 63 2,54 × 63 6,34 × 40 6,34 × 40 3,86 × 63 3,86 × 63 3,86 × 63 3,86 × 63 3,86 × 40 3,86 × 40 3,86 × 40
	34,4 33,5 33,5 34 34 34,4 41,9 42,5	0,77 0,83 0,83 0,77 0,77 0,77 0,78 0,78 0,75	1 404 1 560 1 560 1 424 1 424 1 439 1 168 1 111	1,7 2,5 3 2,12 2,5 2,65 1,12 0,9	MR MR MR MR MR MR MR	IV 80 - IV 81 - V 80 - V 81 - V 80 - IV 50 - V 50 -	90 S 6 80 B 4 80 B 4 80 B 4 90 S 6 80 B 4 90 S 6 80 B 4 80 B 4 80 B 4 80 B 4 80 B 4	32 2,54 × 20 2,54 × 20 50 50 32 2,03 × 20 40				8,42 8,95 8,67 8,38 8,81 8,81	1,03 1,05 1,02 1,02 1,06 1,04 1,04	7 675 7 885 7 177 7 409 7 939 7 470 7 470 7 470	0,9 1,5 1,12 1,06 2,36 1,9 2,24	MR MR MR MR MR MR	2IV 81 2IV 100 IV 100 IV 100 2IV 125 IV 125 IV 125	80 C 90 S 80 C 90 L 90 S 90 S 90 S	4 4 6 4 4	8,08 × 25 8,08 × 25 3,8 × 50 2,54 × 50 6,34 × 32 3,86 × 50 3,86 × 50
	44 41,9 41,9 42,5 42,5 44	0,77 0,83 0,83 0,78 0,78 0,78 0,79	1 104 1 250 1 250 1 150 1 150 1 131	1,12 1,8 2,12 1,5 1,8 1,9	MR MR MR MR MR	IV 63 - IV 64 - V 63 -		25 2,54 x 16 2,54 x 16 40 40 25		250 P		8,8 10,5 10,5 11 10,7 10,5	1,05 1,02 1,02 1,01 1,07 1,05	7 549 6 165 6 165 5 777 6 325 6 320	2,12 0,8 0,95 0,8 1,8 1,7	MR MR MR MR	IV 125 2IV 80 2IV 81 IV 81 2IV 100 2IV 100	80 C 80 C 90 L 80 C	6 4 6 4 4	3,12 × 40 5,08 × 32 5,08 × 32 2 × 50 6,36 × 25 5,08 × 32

P ₁ hp	n ₂ rpm	P ₂ hp	M ₂ Ib in	fs	Gear reducer - motor	i	P h		n ₂ rpm	P ₂ hp	$M_{ m 2}$ lb in	fs	Gear	reducer - moto	r i
1)	44.0	1.00	5 000	4.5	2)	0.0 40)		1.10	0.050			2)	• • • • •
1,5 1,17 1,19 1,19		$\begin{array}{c} 1,06\\ 1,01\\ 1,06\\ 1,07\\ 1,06\\ 1,03\\ 1,03\\ 1,05\\ 1,09\\ 1,05\\ 1,09\\ 1,05\\ 1,09\\ 1,05\\ 1,07\\ 1,05\\ 1,07\\ 1,05\\ 1,08\\ 1,03\\ 1,17\\ 1,11\\ 1,11\\ 1,11\\ 1,11\\ 1,11\\ 1,11\\ 1,11\\ 1,11\\ 1,11\\ 1,11\\ 1,11\\ 1,12\\ 1,08\\ 1,08\\ 1,08\\ 1,08\\ 1,08\\ 1,08\\ 1,13\\ 1,11\\ 1,11\\ 1,11\\ 1,12\\ 1,08\\ 1,12\\ 1,11\\ 1,11\\ 1,11\\ 1,11\\ 1,12\\ 1,22\\ 1,17\\ 1,11\\ 1,12\\ 1,12\\ 1,11\\ 1,11\\ 1,12\\ 1,12\\ 1,12\\ 1,11\\$	$\begin{array}{c} 5 \ 980 \\ 6 \ 017 \\ 6 \ 174 \\ 6 \ 141 \\ 5 \ 000 \\ 4 \ 844 \\ 4 \ 844 \\ 4 \ 844 \\ 4 \ 844 \\ 4 \ 844 \\ 4 \ 844 \\ 4 \ 844 \\ 4 \ 844 \\ 4 \ 844 \\ 4 \ 844 \\ 4 \ 844 \\ 4 \ 844 \\ 4 \ 844 \\ 4 \ 844 \\ 5 \ 010 \\ 5 \ 073 \\ 4 \ 914 \\ 5 \ 010 \\ 5 \ 073 \\ 4 \ 914 \\ 5 \ 010 \\ 5 \ 073 \\ 4 \ 914 \\ 5 \ 010 \\ 5 \ 073 \\ 4 \ 914 \\ 5 \ 010 \\ 5 \ 073 \\ 3 \ 911 \\ 3 \ 910 \\ 4 \ 910 \\ 4 \ 910 \\ 4 \ 910 \\ 4 \ 910 \\ 4 \ 910 \\ 4 \ 910 \\ 4 \ 910 \\ 4 \ 910 \\ 4 \ 910 \\ 8 \ 910 \\ 8 \ 910 \\ 8 \ 910 \\ 8 \ 910 \ 910 \\ 910 \ 910 \\ 910 \ 910 \ 910 \\ 910 \ 910 \ 910 \ 910 \ 910 \ 910 \ 910 \ 910 \ 910 \ 910 \ 910$	$\begin{array}{c} 1,5\\ 1,12\\ 1,5\\ 2,5\\ 6\\ 0,9\\ 0,85\\ 0,9\\ 0,85\\ 0,9\\ 1,25\\ 0,8\\ 0,9\\ 1,25$	MR IV 100 - 80 C 4 MR IV 100 - 90 S 4 MR IV 125 - 90 S 4 MR IV 125 - 90 S 4 MR IV 125 - 90 S 4 MR IV 80 - 80 C 4 MR IV 80 - 80 C 4 MR IV 80 - 80 C 4 MR IV 80 - 90 L 6 MR IV 80 - 90 L 6 MR IV 100 - 90 L 6 MR IV 100 - 90 L 6 MR IV 80 - 90	2,54 × 32 2,54 × 32 2 × 40 2 × 40 2 × 25 2 × 25		1,01 1,02 1,17 1,12	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 1,12\\ 1,22\\ 1,16\\ 1,13\\ 1,13\\ 1,15\\ 1,13\\ 1,15\\ 1,13\\ 1,15\\ 1,16\\ 1,12\\ 1,22\\ 1,21\\ 1,14\\ 1,14\\ 1,16\\ 1,24\\ 1,23\\ 1,16\\$	$\begin{array}{c} 2 \ 059\\ 2 \ 288\\ 2 \ 288\\ 2 \ 288\\ 2 \ 158\\ 2 \ 089\\ 1 \ 086\\ 1 \ 087\\ 1 \ 0$	$\begin{array}{c} 1,18\\ 2,12\\ 2,36\\ 1,4\\ 1,7\\ 1,4\\ 1,7\\ 1,22\\ 1,32\\ 1,12\\ 1,32\\ 1,1$	MR I MR I MR I MR I MR MR MR MR MR MR MR MR MR MR MR MR MR	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 25 4 25 4 25 4 25 4 25 4 20 4 20 4 20 4 20 4 20 4 20 4 20 4 20 4 16 4 16 4 16 4 16

2 2

i

2,54 x 40

2,54 × 40 2,54 × 40 2 × 50 2 × 32 5,08 × 20 3,18 × 32 2,54 × 40 2 × 32 2,54 × 40

2,54 x 25

63

63 3,13 x 32

63

63

2,54 x 32 2 x 40 2,54 x 32 2 x 40 2 x 25 2 x 25 2 x 25 2 x 25

50

50

50

50 3,18 x 25 2,54 x 32 2 x 25

50 50 50

2,54 x 25 2 x 32 2,54 x 25 2 x 32

63

40

40

40

40

2,54 x 25

63

40

40

50

50

32

32

32

32

2,54 x 20

50

40

40

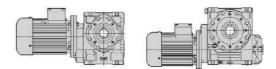
25

2,54 x 16 2 x 20 2,54 x 16 2 x 20

x 20

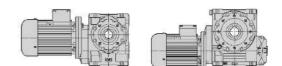
x 20

x 25

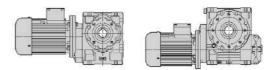

x 25

x 25 x 25

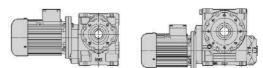
x 32 63


P ₁	n ₂	P_2	M ₂	fs	Gear reducer - motor	i	Γ	P ₁	n ₂	P ₂	<i>M</i> ₂	fs	Gear reducer - motor
hp	rpm	hp	lb in			,		hp	rpm	hp	lb in	,0	
1)	101	1 00	615	15	2)	10	$\left \right $	1)	16.7	1.46	5 506	0.75	2) MR IV 80 - 90 L * 4
1,5	131 131 131 170 170 170 170 243 242	1,28 1,29 1,29 1,29 1,29 1,29 1,32 1,32	615 615 622 475 479 479 489 342 344	2,5 1 1,8 1,8 3 1,25	MR V 50 - 80 C 4 MR V 50 - 90 S * 4 MR V 63 - 90 S 4 MR V 63 - 90 S 4 MR V 50 - 80 C 4 MR V 50 - 80 C 4 MR V 50 - 90 S 4 MR V 50 - 90 S 4 MR V 63 - 90 S 4 MR V 40 - 80 C * 4 MR V 40 - 80 C * 4 MR V 50 - 80 C * 4	13 13 10 10 10 10 7 7 7		2 1,65 1,65 1,65 1,64 1,64	16,7 16,7 17 17,2 17,2 16,7 16,7 16,7 16,7	1,46 1,46 1,44 1,48 1,48 1,48 1,6 1,52 1,51 1,52	$\begin{array}{c} 5 506 \\ 5 506 \\ 5 333 \\ 5 426 \\ 5 426 \\ 6 009 \\ 5 722 \\ 5 676 \\ 5 559 \end{array}$	0,75 0,9 0,8 0,85 1 1,6 1,7 1,5 1,7	MR IV 81 - 90 L * 4 MR IV 81 - 90 L 4 MR IV 80 - 90 LC 6 MR IV 81 - 90 L 4 MR IV 80 - 90 L 6 MR IV 81 - 90 L 4 MR IV 90 L 4 MR IV 100 - 100 L 6
	243 243	1,33 1,33	344 344	2,24 2,24	MR V 50 - 80 C 4 MR V 50 - 90 S * 4	7			17,3 17,5	1,54 1,46	5 607 5 255	1,8 1,18	MR IV 100 - 90 LC 6 MR V 100 - 100 LA 6
2	3,53 3,53 4,41 4,53 4,53 4,37 5,45 5,59 5,59 5,59 5,5 5,5 5,5 5,5 5,5 6,58 6,7 6,7 6,7 6,68 7 7 7,04 7,04 7,13 7,13	$\begin{array}{c} 1,3\\ 1,3\\ 1,36\\ 1,36\\ 1,3\\ 1,34\\ 1,34\\ 1,34\\ 1,38\\ 1,33\\ 1,33\\ 1,33\\ 1,33\\ 1,37\\ 1,37\\ 1,4\\ 1,38\\ 1,41\\ 1,38\\ 1,38\\ 1,41\\ 1,36\\ 1,36\\ 1,4\\ 1,41$	23 168 23 168 23 168 19 462 19 462 19 462 19 341 19 341 16 011 14 988 14 988 15 129 15 129 16 095 13 180 12 975 13 350 12 236 12 236 12 497 12 497 12 445	0,8 0,9 1,06 1,18 0,9 1,4 1,6 1,18 1,4 0,9 1,06 1 1,18 1,9 2,12 0,85 1,32 1,5 1,4 1,06 1,32 1,5 1,4 1,06 1,25 1,14 1,32 1,6	MR 2IV 125 - 90 L 4 MR 2IV 126 - 90 L 4 MR 2IV 125 - 90 L 4 MR 2IV 125 - 90 L 4 MR 2IV 126 - 90 L 4 MR 2IV 126 - 90 L 6 MR IV 126 - 90 LC 6 MR IV 126 - 90 LC 6 MR IV 126 - 90 L 4 MR IV 125 - 90 L 4 MR IV 125 - 90 L 4 MR IV 126 - 90 L 4 MR IV 126 - 90 L 6 MR IV 126 - 90 L 6 MR IV 126 - 90 L 6 MR IV 126 - 90 L 4 MR 2IV 125 - 90 L 4 MR 2IV 125 - 90 L 4 MR 2IV 125 - 90 L 4 MR IV 126 - 90 L 4 MR IV 126 - 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			17,5 17,5 17,5 17,5 20,9 21,3 20,9 21,3 22 22 22 22 22 22 22 22 22 22 22 22 22	1,566 1,55 1,55 1,5 1,51 1,55 1,51 1,55 1,51 1,55 1,533 1,477 1,57 1,557 2,555 1,55 1,557 1,557 1,557 1,557 1,557 1,556 1,557 1,557 1,557 1,557 1,557 1,557 1,557 1,556 1,557 1,557 1,557 1,557 1,557 1,557 1,557 1,557 1,557 1,557 1,557 1,557 1,557 1,557 1,557 1,557 1,556 1,557 1,577 1,577 1,577 1,577 1,577 1,577 1,577 1,577 1,577 1,57	5 255 5 760 5 399 5 399 4 548 4 435 4 435 4 382 4 225 4 225 4 225 4 225 4 225 4 630 4 658 4 498 4 350 4 658 4 498 4 350 4 658 4 350 4 451 3 666 3 658 3 658 3 449 3 449 3 505 5 3 505	1,18 2,8 1,9 2,36 0,95 0,9 1,18 1,06 1,12 1,32 0,8 1 2,12 1,5 2,5 1,25 1,25 1,25 1,12 1,5 1,25 1,12 1,5 1,25 1,12 1,12	MR V 100 - 90 LC 6 6 MR IV 125 - 90 L 4 MR V 125 - 100 LA 6 MR V 125 - 100 LA 6 MR V 126 - 100 LA 6 MR IV 80 - 90 L * 4 MR IV 80 - 90 L * 4 MR IV 81 - 90 L * 4 MR IV 81 - 90 L * 4 MR IV 80 - 90 L 6 MR IV 81 - 90 L 6 MR IV 81 - 90 L 6 MR V 80 - 100 LA 6 6 MR V 80 - 90 L 6 MR V 81 - 90 L 6 MR V 100 - 90 L 4 MR IV 100 - 100 LA 6 MR MR V 100 - 90 L 4 MR V 80 - 90 L 4 MR V 80 - 90 L
1,52	6,88 6,88 8,42 8,95 8,38 8,81 8,8 8,8 8,8 8,8 8,8 8,8 8,8 10,5 11,2 10,6 11 10,7 11 11 11 11 11 11 13,8 13,4 13,5 13,6 13,6	1,46 1,44 1,39 1,39 1,44	13 363 13 363 10 752 9 786 10 103 10 826 10 826 10 186 10 186 10 294 10 793 8 618 8 155 8 205 8 123 9 202 8 375 8 562 8 562 8 562 6 571 7 002 6 701 6 833 7 083	2,65 3 1,12 0,8 0,8 1,7 2 1,4 1,6 1,9 3,15 1,12 0,8 2,12 2,12 2,5 0,8 1,5 1,5 1,32 2,12 2,36 1,5 1,5 1,5 1,5 2,12 2,36 1,5 1,5 1,5 1,5 2,12 2,36 1,5 2,12 2,36 1,5	MR IV 161 - 100 LA 6 MR 2IV 100 - 90 L 4 MR IV 100 - 90 L 4 MR IV 100 - 90 L 6 MR IV 100 - 90 L 6 MR IV 125 - 90 L 4 MR IV 126 - 90 L 4 MR IV 126 - 90 L 6 MR IV 126 - 90 L 6 MR IV 100 - 90 L 4 MR IV 100 - 90 L 4 MR IV 100 - 90 L 4 MR IV 125 - 90 L 6 MR IV 125 - 90 <td>$\begin{array}{c} 4 & \times 40 \\ \times 40 \\ 8,08 & \times 25 \\ 3,8 & \times 50 \\ 2,54 & \times 50 \\ 2,54 & \times 32 \\ 6,34 & \times 32 \\ 3,86 & \times 50 \\ 3,13 & \times 40 \\ 3,13 & \times 32 \\ 2 & \times 40 \\ 3,13 & \times 32 \\ 2 & \times 40 \\ 3,13 & \times 32 \\ 2 & \times 40 \\ 3,13 & \times 32 \\ 2,54 & \times 50 \\ 2,54 & \times 32 \\ 3,13 & \times 40 \\ 2,54 & \times 32 \\ 3,13 & \times 40 \\ 2,54 & \times 32 \\ 3,13 & \times 40 \\ 2,54 & \times 32 \\ 3,13 & \times 40 \\ 3$</td> <td></td> <td>1,42 1,42 1,42 1,42 1,42</td> <td>27,5 27,5 26,8 27 27,5 27,5 27,5 27,5 34 34,4 34,4 34,4 34,4 34,4 34,4 34,4</td> <td>1,53 1,53 1,53 1,6 1,52 1,57 1,555 1,559 1,577 1,578 1,578 1,577 1,577 1,577 1,577 1,577 1,577 1,577 1,577 1,578 1,558 1,558 1,558 1,558 1,558 1,558 1,558 1,558 1,558 1,588 1,689 1,689 1,689 1,680 1,590 1,590 1,590 1,590 1,590 1,590 1,590 1,590 1,5</td> <td>3 505 3 505 3 762 3 547 3 596 3 596 3 596 2 872 2 878 2 872 2 873 2 878 2 870 2 921 2 451 2 263 2 263 2 263 2 264 2 2 542 2 2 490 2 542 2 490 2 542 2 490</td> <td>1,06 1,25 2,36 1,6 2,12 2,12</td> <td>MR V 80 - 90 LC 6 MR V 81 - 90 LC 6 MR V 100 - 90 L 4 MR V 64 - 90 L 6 MR V 64 - 90 L 4 MR V 80 - 90 L 6 MR V 80 - 90 L 6 MR V 80 - 90 L 6 MR V 63 - 90 L 4 MR V 63 - 90 L 4 MR V 63 - 90 L 4 MR V 6</td>	$\begin{array}{c} 4 & \times 40 \\ \times 40 \\ 8,08 & \times 25 \\ 3,8 & \times 50 \\ 2,54 & \times 50 \\ 2,54 & \times 32 \\ 6,34 & \times 32 \\ 3,86 & \times 50 \\ 3,13 & \times 40 \\ 3,13 & \times 32 \\ 2 & \times 40 \\ 3,13 & \times 32 \\ 2 & \times 40 \\ 3,13 & \times 32 \\ 2 & \times 40 \\ 3,13 & \times 32 \\ 2,54 & \times 50 \\ 2,54 & \times 32 \\ 3,13 & \times 40 \\ 2,54 & \times 32 \\ 3,13 & \times 40 \\ 2,54 & \times 32 \\ 3,13 & \times 40 \\ 2,54 & \times 32 \\ 3,13 & \times 40 \\ 3$		1,42 1,42 1,42 1,42 1,42	27,5 27,5 26,8 27 27,5 27,5 27,5 27,5 34 34,4 34,4 34,4 34,4 34,4 34,4 34,4	1,53 1,53 1,53 1,6 1,52 1,57 1,555 1,559 1,577 1,578 1,578 1,577 1,577 1,577 1,577 1,577 1,577 1,577 1,577 1,578 1,558 1,558 1,558 1,558 1,558 1,558 1,558 1,558 1,558 1,588 1,689 1,689 1,689 1,680 1,590 1,590 1,590 1,590 1,590 1,590 1,590 1,590 1,5	3 505 3 505 3 762 3 547 3 596 3 596 3 596 2 872 2 878 2 872 2 873 2 878 2 870 2 921 2 451 2 263 2 263 2 263 2 264 2 2 542 2 2 490 2 542 2 490 2 542 2 490	1,06 1,25 2,36 1,6 2,12 2,12	MR V 80 - 90 LC 6 MR V 81 - 90 LC 6 MR V 100 - 90 L 4 MR V 64 - 90 L 6 MR V 64 - 90 L 4 MR V 80 - 90 L 6 MR V 80 - 90 L 6 MR V 80 - 90 L 6 MR V 63 - 90 L 4 MR V 63 - 90 L 4 MR V 63 - 90 L 4 MR V 6

P ₁ hp	n ₂	P_2 hp	M ₂ Ib in	fs	Gear reducer - motor	i	P ₁	n ₂	P ₂ hp	M ₂ Ib in	fs	Gear redu	cer - motor	i
1)					2)		1)						2)	
2	42,5 42,5 44 44 44 44 41,9 42,5	1,58 1,58 1,61 1,61 1,61 1,61 1,71 1,62	2 349 2 349 2 311 2 311 2 311 2 311 2 311 2 576 2 407	1,32 1,6 1,8 2,12 1,8 2,12 3,15 2,65	MR V 81 - 90 L 4 MR V 80 - 100 LA 6 MR V 81 - 100 LA 6 MR V 81 - 100 LA 6 MR V 81 - 90 LC 6 MR V 80 - 90 LC 6 MR V 81 - 90 LC 6 MR IV 100 - 90 L 4	40 25 25 25 25 2,54 x 16	2,5	8,8 8,8 8,66 8,66 10,5 11,2 11 10,7	1,77 1,77 1,83 1,83 1,76 1,78 1,75 1,93	12 696 12 696 13 311 13 311 10 629 10 058 10 019 11 349	1,25 1,5 2,5 3 1 0,9 0,75 1,4	MR IV 126 MR IV 160 MR IV 161 MR 2IV 100 MR IV 100	- 100 LB 6 - 90 LB 4 - 90 LB 4 - 90 LB 4 - 100 LB 6 - 90 LB 4	3,13 × 40 3,13 × 40 3,17 × 40 5,08 × 32 3,8 × 40 2 × 50 6,34 × 25
	53,1 53,1 53,1 53,1 53,1 53,1 53,1 53,1	1,68 1,68 1,59 1,59 1,71 1,71 1,62 1,62	1 994 1 994 1 886 1 886 2 027 2 027 1 923 1 923	1,06 1,25 0,9 1,06 1,9 2,36 1,7 2	MR IV 64 - 90 L 4 MR V 63 - 90 L 4 MR V 64 - 90 L 4 MR IV 80 - 90 L 4 MR IV 80 - 90 L 4 MR IV 81 - 90 L 4 MR V 80 - 90 L 4 MR V 81 - 90 L 4	2 x 16 32 2 x 16 2 x 16 32 32 32		10,7 11 13,4 13,4 13,4 13,8 13,6	1,93 1,81 1,81 1,84 1,83 1,79 1,82 1,84	11 349 10 329 10 329 8 636 8 264 8 426 8 342 8 551	1,7 1,5 1,8 1,25 1,18 0,9 1,06 1,7	MR 2IV 126 MR IV 125 MR IV 126 MR 2IV 100 MR IV 125	i = 90 LB 4 i = 90 LB 6 i = 90 LB 4	6,34 × 25 3,86 × 40 3,86 × 40 5,08 × 25 3,8 × 32 2,54 × 50 2 × 40 3,13 × 40
1,3	68 68 68,8 68 68	1,6 1,63 1,63 1,7 1,66 1,66 1,63 1,72	1 482 1 511 1 511 1 560 1 538 1 538 1 211 1 272	0,71 1,18 1,4 1,25 2,24 2,65 0,85 1,25	MR V 64 - 90 L 4 MR V 63 -100 LA*6 MR V 80 - 90 L 4 MR V 81 - 90 L 4	25 25 16 25 25	1,64	13,6 13,6 13,6 17,2 16,7 16,7 16,7 17,2	1,84 1,88 1,88 1,82 1,97 1,87 1,87 1,86 1,87	8 551 8 735 8 735 6 692 7 411 7 057 7 000 6 856	2 1,9 2,24 0,85 1,32 1,32 1,18 1,4	MR IV 125 MR IV 126 MR IV 81 MR 2IV 100 MR IV 100 MR IV 100	- 90 LB 4 -100 LB 6 -100 LB 6 -100 LB 6 -90 LB 4 -90 LB 4 -90 LB 4 -90 LB 4 -90 LB 4	3,13 × 40 2,54 × 32 2,54 × 32 2 × 32 5,08 × 20 3,18 × 32 2,54 × 40 2 × 32
	85 84,6 84,6 85 85 106 106	1,72 1,73 1,73 1,73 1,74 1,74 1,74 1,71 1,74	1 272 1 287 1 287 1 287 1 287 1 287 1 287 1 287 1 017 1 031	1,5 1,7 1,4 1,7 2,36 2,8 0,95 1,5	MR V 81 - 90 L 4	13 13 13 20 20 16	1,8 1,8 1,8 1,8 1,8		1,8 1,92 1,84 1,84 1,86 1,86 1,86 1,84 1,89	6 481 7 104 6 659 6 659 5 609 5 609 5 409 5 470 5 404	0,95 2,24 1,6 1,9 0,8 0,95 0,85 0,9	MR IV 125 MR V 125 MR V 126 MR IV 80 MR IV 81 MR IV 81	- 100 LB 6 - 90 LB 4 - 100 LB 6 - 100 LB 6 - 90 LB*4 - 90 LB*4 - 90 LB 4 - 90 LB 4 - 90 LB 4 - 100 LB*6	2,54 x 32 2 x 40
	106 106 131 131 131 131 131	1,74 1,76 1,76 1,74 1,76 1,76 1,76	1 031 1 043 1 043 839 848 848 848 654	1,8 2,8 3,35 1,06 1,8 2,12 1,32	MR V 64 - 90 L 4 MR V 80 - 90 L 4 MR V 81 - 90 L 4 MR V 50 - 90 L 4 MR V 50 - 90 L 4 MR V 63 - 90 L 4 MR V 63 - 90 L 4 MR V 63 - 90 L 4 MR V 50 - 90 L 4	16 16 13 13 13 13 13		2 22	1,89 1,89 1,82 1,94 1,91 1,87 2,05 1,92 1,92	5 404 5 404 5 211 5 710 5 744 5 365 5 929 5 489 5 489	0,9 1,06 0,8 1,7 1,6 1,25 2,36 2,12 2,5	MR IV 81 MR V 81 MR IV 100 MR IV 100 MR V 100 MR V 100 MR V 100 MR V 125 MR V 125	-100 LB *6 -100 LB 6 - 90 LB *4 - 90 LB 4 - 100 LB 6 - 90 LB 4 - 100 LB 6 - 100 LB 6 - 100 LB 6	2 x 25 50 3,18 x 25 2,54 x 32 50 3,13 x 25 50 50 50
2,5	170 243 243 4,41 4,41 4,37	1,8 1,81 1,83 1,68 1,68 1,65	667 469 475 24 003 24 003 23 854	2,24 1,6 2,65 0,85 1 1,18	MR V 50 - 90 L *4 MR V 63 - 90 L 4 MR 2IV 125 - 90 LB 4 MR 2IV 126 - 90 LB 4	7 7 12 x 32 12 x 32	2 2 2 2,04 2,02	2 27,5	1,92 1,9 1,92 1,9 1,82 1,89	4 521 4 512 4 521 4 512 4 512 4 253 4 323	1 0,9 1,18 1,06 0,8 0,85	MR IV 80 MR IV 81 MR IV 81 MR V 81 MR V 81 MR V 80	- 90 LB*4 - 90 LB 4 - 90 LB 4 - 90 LB*4 - 90 LB 4 - 90 LB 4 - 100 LB 6	2,54 x 25 2 x 32 2,54 x 25 2 x 32 63 40
	4,37 4,37 5,45 5,45 5,59 5,59 5,5	1,65 1,71 1,71 1,71 1,64 1,73	23 854 24 634 19 746 19 746 18 485 19 850	1,32 2,12 1 1,18 0,85 1,5	MR IV 161 -100 LB 6 MR IV 200 -100 LB 6 MR 2IV 125 - 90 LB 4 MR 2IV 126 - 90 LB 4 MR IV 126 -100 LB 6 MR IV 160 -100 LB 6	4 x 63 4 x 63 9,75 x 32 9,75 x 32 3,13 x 63 4 x 50	1,42	27,5 26,8 27 27,5 27,5 27,5 234 34	1,89 1,97 1,87 1,94 1,96 1,91 1,96	4 323 4 640 4 375 4 435 4 482 3 543 3 630	1 2 1,25 1,7 2,65 0,75 1,18	MR IV 100 MR V 100 MR V 100 MR V 125 MR IV 64	- 100 LB 6 - 90 LB 4 - 90 LB 4 - 100 LB 6 - 100 LB 6 - 90 LB 4 - 90 LB 4 - 90 LB 4	40 2,54 x 25 63 40 40 2 x 25 2 x 25 2 x 25
	5,5 6,7 6,68 6,68 7 7 7,04 7,04 6,88 6,88	1,73 1,7 1,74 1,74 1,74 1,68 1,68 1,72 1,72 1,8 1,8	19 850 16 002 16 002 16 465 16 465 15 092 15 092 15 413 15 413 16 481 16 481	1,8 1,06 1,25 1,12 1,4 0,85 1 0,95 1,12 2,12 2,5	MR 2IV 126 - 90 LB 4 MR 2IV 125 -100 LB 6 MR 2IV 126 -100 LB 6 MR IV 125 - 90 LB 4 MR IV 125 - 90 LB 4 MR IV 126 - 90 LB 4 MR IV 125 -100 LB 6	$\begin{array}{c} 6,34 \times 40 \\ 6,34 \times 40 \\ 5,15 \times 32 \\ 5,15 \times 32 \\ 3,86 \times 63 \\ 3,86 \times 63 \\ 3,13 \times 50 \\ 3,13 \times 50 \\ 4 \qquad \times 40 \end{array}$	1,83	34 34 34,4 34,4 33,4 33,5 34 34,4 34,4 3	1,96 1,9 1,94 1,94 2,09 2,08 1,94 1,98 2,04	3 630 3 514 3 514 3 550 3 550 3 936 3 916 3 602 3 626 3 023	1,4 0,85 1 1,12 1,32 2,24 2,12 1,6 2,12 0,8	MR IV 81 MR V 80 MR V 81 MR V 80 MR V 81 MR V 100 MR IV 100 MR V 100 MR V 100 MR V 100 MR IV 100	- 90 LB 4 - 90 LB 4 - 90 LB 4 - 100 LB 6 - 100 LB 6 - 90 LB 4 - 90 LB 4	2 x 25 50 32 3,18 x 16 2,54 x 20 50 32 2 x 20
	8,42 8,38 8,38 8,81 8,81	1,77 1,77 1,77 1,77 1,76 1,76	13 261 13 352 13 352 12 562 12 562	0,9 1,4 1,6 1,12 1,32	MR 2IV 100 - 90 LB 4 MR 2IV 125 - 90 LB 4 MR 2IV 126 - 90 LB 4 MR IV 126 - 90 LB 4 MR IV 125 - 90 LB 4	8,08 x 25 6,34 x 32 6,34 x 32 3,86 x 50	1,5 1,5		1,95 1,95 2,08 2,07 2,08 2,07	2 791 2 791 3 135 3 071 3 135 3 071	0,75 0,9 1,32 1,25 1,6 1,5	MR V 64 MR IV 80 MR IV 80 MR IV 81	- 100 LB*6 - 100 LB*6 - 90 LB*4 - 90 LB 4 - 90 LB 4 - 90 LB*4 - 90 LB 4	25 25 2,54 x 16 2 x 20 2,54 x 16 2 x 20 2 x 20



P ₁ hp	n ₂ rpm	P ₂ hp	M ₂ Ib in	fs	Gear reducer - motor	i		P ₁ hp	n ₂ rpm	P ₂ hp	M ₂ Ib in	fs	Gear reducer - motor i
1)					2)			1)					2)
2,5	42,5 42,5 44 44 41,9	1,95 1,95 1,99 1,99 2,11	2 897 2 897 2 850 2 850 2 850 3 177	1,12 1,32 1,4 1,7 2,65	MR V 80 - 90 LB 4 MR V 81 - 90 LB 4 MR V 80 - 100 LB 4 MR V 80 - 100 LB 6 MR V 81 - 100 LB 6 MR IV 100 - 90 LB 4	40 40 25 25 2,54 x 16		3	8,5 8,66 8,66 10,5	2,18 2,1	15 930 15 830 15 830 12 640	2,12 2,12 2,5 0,85	MR IV 161 -100 LA 4 4 x MR IV 160 -112 M 6 3,17 x MR IV 161 -112 M 6 3,17 x MR IV 161 -112 M 6 3,17 x MR IV 160 - 90 LC 4 5,08 x
1,99 1,99 1,81	42,5 53,1 53,1 53,1	2 2,07 2,07 1,96	2 969 2 460 2 460 2 326	2,12 0,85 1 0,75	MR V 100 - 90 LB 4 MR IV 63 - 90 LB 4 MR IV 64 - 90 LB 4 MR V 63 - 90 LB 4	40 2 x 16 2 x 16 32			10,3 10,3 10,9 10,9 11	2,15 2,15 2,14 2,14 2,15	13 112 13 112 12 378 12 378 12 283	1,32 1,6 1,06 1,32 1,25	MR 2IV 125 -100 LA 4 5,15 × MR 2IV 126 -100 LA 4 5,15 × MR IV 125 -100 LA 4 3,13 × MR IV 126 -100 LA 4 3,13 × MR IV 126 -100 LA 4 3,13 × MR IV 126 -90 LC 4 3,86 ×
1,81	53,1 53,1 53,1 53,1 53,1 53,1	1,96 2,11 2,11 2 2	2 326 2 500 2 500 2 372 2 372 2 372	0,9 1,6 1,9 1,4 1,6	MR V 64 - 90 LB 4 MR IV 80 - 90 LB 4 MR IV 81 - 90 LB 4 MR V 80 - 90 LB 4 MR V 80 - 90 LB 4 MR V 81 - 90 LB 4	32 2 x 16 2 x 16 32 32			11 10,8 10,8 10,6 10,6	2,15 2,15 2,15 2,22 2,22	12 283 12 479 12 479 13 178 13 178	1,5 1,25 1,5 2,36 2,8	MR IV 126 - 90 LC 4 3,86 × MR IV 125 - 112 M 6 2,54 × MR IV 126 - 112 M 6 2,54 × MR IV 160 - 100 LA 4 4 MR IV 161 - 100 LA 4 4
2 2	53,1 68 68 68 68 68	2,03 2,01 2,01 2,05 2,05	2 413 1 864 1 864 1 897 1 897	2,65 0,95 1,12 1,8 2,12	MR V 100 - 90 LB 4 MR V 63 - 90 LB 4 MR V 64 - 90 LB 4 MR V 64 - 90 LB 4 MR V 80 - 90 LB 4 MR V 81 - 90 LB 4	32 25 25 25 25			13,4 13,4 13,8 13,6 13,6	2,18 2,13 2,16 2,19 2,19 2,19	10 269 10 020 9 920 10 168 10 168	1,06 0,75 0,9 1,5 1,7	MR 2IV 100 - 90 LC 4 5,08 × MR IV 100 - 90 LC 4 2,54 × MR IV 100 - 112 M 6 2 × MR IV 125 - 100 LA 4 3,13 × MR IV 126 - 100 LA 4 3,13 ×
	85 85 85 85	2,12 2,12 2,14 2,14	1 569 1 569 1 587 1 587	1 1,18 1,9 2,24	MR V 63 - 90 LB 4 MR V 64 - 90 LB 4 MR V 80 - 90 LB 4 MR V 81 - 90 LB 4	20 20 20 20			13,6 13,6 13,6 13,6 13,6 13,4	2,19 2,19 2,23 2,23 2,27	10 168 10 168 10 388 10 388 10 679	1,5 1,7 1,6 1,9 2,8	MR IV 125 - 90 LC 4 3,13 × MR IV 126 - 90 LC 4 3,13 × MR IV 126 - 90 LC 4 3,13 × MR IV 125 - 112 M 6 2,54 × MR IV 126 - 112 M 6 2,54 × MR IV 160 - 100 LA 4 3,17 ×
1,81	106 106 106 106 106	2,11 2,14 2,14 2,17 2,17	1 255 1 272 1 272 1 286 1 286	0,75 1,25 1,5 2,36 2,8	MR V 50 - 90 LB*4 MR V 63 - 90 LB 4 MR V 64 - 90 LB 4 MR V 80 - 90 LB 4 MR V 80 - 90 LB 4 MR V 81 - 90 LB 4	16 16 16 16 16			13,4 16,7 17 16,7	2,27 2,34 2,18 2,21	10 679 8 813 8 088 8 324	3,35 1,12 0,85 1	MR IV 161 - 100 LA 4 3,17 × MR 2IV 100 - 90 LC 4 5,08 × MR IV 100 - 100 LA 4 2 × MR IV 100 - 90 LC 4 2,54 ×
1,97	131 131 131 131 131 131	2,15 2,17 2,17 2,19 2,19	1 034 1 046 1 046 1 056 1 056	0,9 1,4 1,7 2,65 3,15	MR V 50 - 90 LB*4 MR V 63 - 90 LB 4 MR V 64 - 90 LB 4 MR V 80 - 90 LB 4 MR V 80 - 90 LB 4 MR V 81 - 90 LB 4	13 13 13 13 13 13		j	17,2 17,5 16,8 16,8 17	2,22 2,14 2,24 2,24 2,28	8 153 7 708 8 435 8 435 8 448	1,18 0,8 1,6 2 1,9	MR IV 100 - 112 M 6 2 x MR V 100 - 112 M 6 63 MR IV 125 - 100 LA 4 2,54 x MR IV 126 - 100 LA 4 2,54 x MR IV 125 - 90 LC 4 3,13 x
	170 170 170 243	2,17 2,22 2,22 2,23	806 822 822 579	1,06 1,8 2,12 1,32	MR V 50 - 90 LB*4 MR V 63 - 90 LB 4 MR V 64 - 90 LB 4 MR V 50 - 90 LB*4	10 10 10 7		T	17 17,5 17,5 17,5 21,3	2,28 2,19 2,19 2,25 2,25	8 448 7 919 7 919 8 116 6 704	2,24 1,32 1,6 2,36 1,18	MR IV 126 90 LC 4 3,13 x MR V 125 -112 M 6 63 MR V 126 -112 M 6 63 MR V 160 -112 M 6 63 MR IV 100 -100 LA 4 2 x
	243	2,25	585	2,24	MR V 63 - 90 LB 4	7	F		20,9 22	2,27 2,3	6 831 6 597	1,32 1,5	MR IV 100 - 90 LC 4 2,54 x MR IV 100 - 112 M 6 2 x
3	4,41 4,37 4,37 4,37 5,45	2 1,96 1,96 2,03 2,03	28 544 28 366 28 366 29 295 23 482	0,8 0,95 1,12 1,8 0,85	MR 2IV 126 - 90 LC 4 MR IV 160 - 112 M 6 MR IV 161 - 112 M 6 MR IV 200 - 112 M 6 MR 2IV 125 - 90 LC 4	12 x 32 4 x 63 4 x 63 4 x 63 9.75 x 32			22 21 21,8 22 22	2,23 2,32 2,43 2,28 2,28 2,28	6 379 6 980 7 051 6 528 6 528	1,06 2,12 2 1,7 2,12	MR V 100 - 112 M 6 50 MR IV 125 - 100 LA 4 2,54 × MR IV 125 - 90 LC 4 3,13 × MR V 125 - 112 M 6 50 MR V 125 - 112 M 6 50
	5,45 5,5 5,5 5,5	2,03 2,06 2,06 2,12	23 482 23 606 23 606 24 306	1 1,25 1,5 2,65	MR 2IV 126 - 90 LC 4 MR IV 160 - 112 M 6 MR IV 161 - 112 M 6 MR IV 200 - 112 M 6	9,75 x 32 4 x 50 4 x 50 4 x 50 4 x 50		2 2 2,31	26,6 26,6 27,5 26,6	2,26 2,26 2,24 2,31	5 366 5 366 5 141 5 482	0,75 0,9 0,85 1,5	MR IV 80 - 90 LC 4 2 × MR IV 81 - 90 LC 4 2 × MR V 81 - 112 M 6 40 MR IV 100 - 100 LA 4 2 ×
	6,71 6,71 7 7,04 7,04 6,75 6,75	2,05 2,05	19 478 19 478 17 947 18 329 18 329 19 186 19 186	0,95 1,12 0,85 0,8 0,95 1,25 1,5	MR 2IV 126 - 100 LA 4 MR IV 126 - 90 LC 4 MR IV 125 - 112 M 6 MR IV 126 - 112 M 6				26,8 27 27,5 26,8 27 27	2,34 2,23 2,23 2,3 2,47 2,29 2,29	5 517 5 203 5 203 5 274 5 798 5 337 5 337	1,6 1,06 1,06 1,4 2,24 1,7 2,12	MR IV 100 - 90 LC 4 2,54 × MR V 100 - 100 LA 4 63 MR V 100 - 90 LC 4 63 MR V 100 - 112 M 6 MR V 100 - 112 M 6 MR V 102 - 100 LA 4 63 MR V 125 - 100 LA 4 63 MR V 126 - 100 LA 4 63
	6,88 6,88 8,26 8,26	2,14 2,14 2,07 2,07	19 599 19 599 15 765 15 765	1,8 2,12 1 1,18	MR IV 160 - 112 M 6 MR IV 161 - 112 M 6 MR 2IV 125 - 100 LA 4 MR 2IV 126 - 100 LA 4	4 x 40 4 x 40 5,15 x 40 5,15 x 40		2,22 2,22 2,29	27,5 34 34 34 34	2,33 2,33 2,33 2,25	5 331 4 317 4 317 4 179	2,24 1 1,18 0,71	MR V 125 - 112 M 6 40 MR IV 80 - 90 LC 4 2 × MR IV 81 - 90 LC 4 2 × MR V 80 - 100 LA 4 50
	8,38 8,38 8,63 8,63 8,81 8,81	2,04 2,04 2,09	15 878 15 878 14 880 14 880 14 939 14 939	1,18 1,4 0,8 0,95 0,95 1,12	MR 2IV 126 - 90 LC 4 MR IV 125 - 100 LA 4 MR IV 126 - 100 LA 4 MR IV 126 - 90 LC 4	6,34 x 32 3,13 x 63 3,13 x 63 3,86 x 50		2,29 2,29 2,21	34	2,25 2,25 2,25 2,3 2,3 2,3 2,38	4 179 4 179 4 179 4 222 4 222 4 222 4 414	0,85 0,71 0,85 0,9 1,12	MR V 80 - 112 M 6 32 MR V 81 - 112 M 6 32
	8,81 8,8 8,8 8,5	2,09 2,11 2,11 2,15	14 939 15 098 15 098 15 930	1,12 1,06 1,25 1,7	MR IV 125 - 112 M 6	3,13 x 40 3,13 x 40			34 33,5 34 34	2,38 2,47 2,31 2,31	4 4 14 4 657 4 284 4 284	1,9 1,8 1,32 1,32	MR IV 100 -100 LA 4 2 × MR IV 100 - 90 LC 4 2,54 × MR V 100 -100 LA 4 50 MR V 100 - 90 LC 4 50


1) Powers valid for continuous duty S1; **increase** possible for S2 ... S10 (see ch. 2b) in which case P_2 , M_2 increase and fs decreases proportionately. 2) For complete designation when ordering see ch. 3. * Mounting postion **B5R** (see table ch.2b)

44 2.37 3.389 1.4 MR V 100 102 25 28 23 100 MR V 100 112 UC 6 4 42.0 251 3775 2.19 MR V 100 100 14 2.51 2.80 33 10.5 MR V 100 112 UC 6 4 44 2.43 3.44 2.44 3.44 2.44 3.45 MR V 100 112 UC 6 4 5.5 2.81 33 1.30 MR V 100 112 UC 6 4 1.80 3.31 2.47 2.48 MR V 100 112 UC 6 4 6.75 2.80 2.27 1.8 MR V 100 112 UC 6 4 6.88 2.92 2.76 1.8 MR V 100 112 UC 6 4 2.85 1.8 MR V 100 112 UC 6 4 2.85 2.87 2.28 2.85 1.8	P ₁ hp	n ₂ rpm		M ₂ Ib in	fs	Gear reducer - motor	i	P ₁ hp	n ₂ rpm	P ₂ hp	M ₂ Ib in	fs	Ge	ar reducer - moto	· i
33.5 25. 4 (7) 3	1)					2)		1)						2)	
42.5 2.4.6 3.682 1 MR V 80 - 00 LC 4 2 x20 42.5 2.3.2 3.445 1.0.9 MR V 80 - 00 LC 4 40 42.5 2.3.3 3.445 1.0.9 MR V 80 - 00 LC 4 40 42.5 2.3.3 3.445 1.0.8 MR V 80 - 00 LC 4 40 42.5 2.3.3 3.446 1.0.8 MR V 80 - 00 LC 4 40 42.5 2.3.3 3.44 1.0.8 MR V 80 - 00 LC 4 40 42.5 2.3.3 3.43 1.1.8 MR V 0.0.1 4 4.3 7.7.7 7.9 9.8 MR V 1.0.1 4.0 2.5.2 2.8 3.33 1.0.8 MR V 1.0.1 1.0.2 1.0.2 1.0.2 1.0.2 1.0.2 1.0.2 1.0.2 1.0.2 1.0.2 1.0.2 1.0.2 1.0.2 1.0.2 1.0.2 1	3	33,5	2,5	4 707	3	MR IV 125 - 100 LA 4	2,54 x 20	3	170	2,66	986	3,15	MR	V 81 - 90 LC	4 10
42.5 2.22 3.445 1.12 MR V 80 + 100 LA 4 4.0 42.4 42.2 2.22 3.445 1.12 MR V 80 + 112 M 6 2.5 42.5 2.23 3.445 1.12 MR V 80 + 112 M 6 2.5 2.41 3.21 2.77 3.98 H 1.2 MR V 200 - 112 MC 6 42.5 2.33 3.53 1.6 MR V 100 - 100 LA 4 4.07 2.8 2.90 1.6 MR V 100 - 112 M 6 2.5 2.21 2.32 2.67 2.8 2.80 M NR V 100 - 102 LA 4 4.0 5.5 2.81 2.90 1.5 MR V 100 - 102 LA 4 4.0 5.5 2.81 2.90 1.6 MR V 100 - 102 LA 4 4.0 6.75 2.8 6.80 2.80 6.70 2.8 6.80 2.80 7.20 1.30 MR V 100 - 100 LA 4 4.0 6.80 <t< th=""><th></th><th>42,5 42,5</th><th>2,46 2,46</th><th>3 652 3 652</th><th>1 1,25</th><th>MR IV 80 - 90 LC 4 MR IV 81 - 90 LC 4</th><th>2 x 20 2 x 20</th><th></th><th>243 243</th><th>2,68 2,68</th><th>696 696</th><th>2,24 1,8</th><th>MR MR</th><th>V 64-100 LA* V 63- 90 LC</th><th>4 7 4 7</th></t<>		42,5 42,5	2,46 2,46	3 652 3 652	1 1,25	MR IV 80 - 90 LC 4 MR IV 81 - 90 LC 4	2 x 20 2 x 20		243 243	2,68 2,68	696 696	2,24 1,8	MR MR	V 64-100 LA* V 63- 90 LC	4 7 4 7
42.5 2.32 3.445 1.12 M.R V 801 - 90 LC 4 4.05 2.47 3.39 H1 2.5 M.R V 200 - 112 M 6 4.45 42.6 2.33 3.38 1.4 M.R V 801 - 112 M 6 2.5 2.81 3.55 2.81 2.91 1.56 M.R V 1200 - 112 M 6 4.55 42.5 2.38 3.53 2.41 2.56 M.R V 1200 - 112 M 6 2.5 2.81 3.21 M R V 1200 - 112 M 6 4.55 2.81 3.21 M R V 1200 - 112 M 6 4.55 2.81 3.21 M R V 1200 - 112 M 6 4.55 2.81 3.31 M R V 200 - 112 M 6 4.55 2.81 3.31 M R V 1200 - 112 M 6 4.55 2.81 3.31 M R V 120 - 112 M 6 4.55 2.81 3.31 M R V 120 - 112 M 6 4.55 2.81 3.31 2.81 M R V 120 - 112 M 6 4.55 2.81 3.31 2.81 M R V 120 - 112 M 6 4.55 2.81 2.81 2.81 M R V 120 - 112 M 6 4.55		42,5	2,32	3 445	1,12	MR V 81-100 LA 4		4							
44 2.37 3.389 1,4 MR V 101 - 112 MC 6 4 44.25 2.51 3.716 2.12 MR V 100 - 100 LA 4 2 x 20 44.25 2.38 3.330 1.8 MR V 100 - 100 LA 4 4 0 5.5 2.81 2.910 0.95 MR V 100 - 112 MC 6 4 42.5 2.38 3.330 1.8 MR V 100 - 112 MC 6 4 40 5.7 2.83 2.80 1.8 MR V 100 - 112 MC 6 4 1.80 S.31 2.37 2.7 0.80 MR V 100 - 112 MC 6 4 40 5.2 2.87 1.28 MR V 100 - 112 MC 6 4 1.80 S.31 2.37 2.78 0.90 LC 4 2.2 116 6.82 2.87 1.28 MR V 100 - 112 MC 6 4 5.31 2.38 2.87 1.18 MR V 100 - 112 MC 6 3.2 8.8 2.87 2.28 MR V 100 - 112 MC 6 3.2 5.31 2.38 2.87 1.18 MR	0	42,5	2,32	3 445	1,12	MR V 81 - 90 LC 4	40		4,37	2,77	39 948	1,32	MR	IV 200 - 112 MC	6 4 × 63
419 251 3772 2.12 MR V100 -102 2.64 36 42,5 2.88 3301 18 MR V100 -100 4 40 42,5 2.88 3301 18 MR V100 -112 M G 6 44,5 2.44 3.64 2.66 MR V100 -112 M G 6 42,5 2.48 3.64 2.66 MR V120 -112 M G 6 1.99 53,1 2.34 2.65 MR V 64 90 C 4 2 x 16 6.675 2.80 2.677 2.80 MR V 200 -112 M G 4 1.81 33,1 2.31 2.32 MR V 200 112 M G 4 6.688 2.92 2.767 1.8 MR V 200 112 M G 4 6.68 2.89 2.731 1.8 MR V 200 112 M G 4 2.86 8.8 2.773 2.86 MR V 200 101 M H V 101 M H V 102 M H V100 112 M G <td< th=""><th>2,</th><th></th><th></th><th></th><th></th><th></th><th>25</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>'</th></td<>	2,						25								'
42,5 2,38 33,30 18 MR V 100 - 100 LA 4 40 42,5 2,38 33,30 18 MR V 100 - 100 LA 4 40 42,5 2,38 33,30 18 MR V 100 - 112 MC 6 25 42,5 2,38 33,10 2,47 2,48 2,48 33,16 2,48 2,48 31,12 2,47 11,20 6 11,20 6 11,20 6 11,20 11,											32 190	L (6 4 x 5
44 242 243 54 128 28 128 3.22 6.71 28 28 128 0.85 MR V128<-100 LB 4 1.99 53.1 2.47 2.925 0.65 MR V128<-100 LB 4 4 1.99 53.1 2.47 2.925 0.65 MR VV 0.01 LB 4 4 3.31 2.83 2.87 0.85 MR VV 0.01 LB 4 6.68 2.92 2.76 1.8 MR VV 10.10 LB 4 3.31 2.83 2.81 1.8 MR V 0.01 LA 4 2 ×16 6.68 2.99 2.702 1.8 MR V 126 10.10 LB 4 3.31 2.98 2.81 1.18 MR V 100-100 LA 4 2 ×16 6.88 2.99 2.702 1.8 MR V 126-100 LB 4 3.3 3.31 2.24 MR V 100-100 LA 4 2 ×16 6.85 2.33 2.732 1.73		42,5	2,38	3 530	1,8	MR V 100 - 100 LA 4	40		· · ·						
13.9 3.1 2.47 2.905 0.85 MR V 6.4 - 90 LC 4 2.1 6.75 2.8 2.672 1.12 MR V 10.1 10								3,32	· ·						
1.6 53.1 2.31 2.76 7.76 7.6 6.68 2.92 2.76 1.32 MR V 60 -112 MC 6 4 53.1 2.81 2.972 1.6 MR IV 80 0.0 4 2 X 16 6.68 2.92 2.67 6.68 2.92 2.67 MR IV 0.0 1.0 4 4 2.0 7.75 2.89 2.97 0.22 MR IV 0.0 1.0 4 4 2.0 0.0 <	_	· · · ·			1							1 1			
53.1 22.51 22.57 16 MR V 20 - 100 LB 4 32 53.1 23.8 28.21 1.8 MR V 80 - 100 LA 32 6.8 2.8 27 32 2.8 MR V 200 - 112 MC 6 5.8 53.1 2.8 2.821 1.4 MR V 80 - 90 LC 32 8.6 2.87 20.88 0.8 MR V 128 - 102 MC 6 3.3 53.1 2.54 3.08 2.24 MR V 100 - 100 LA 4 32 8.6 2.87 2.98 0.26 MR V 100 - 100 LA 4 32 8.6 2.97 2.18 MR W 100 - 100 LA 4 32 8.6 2.97 2.18 MR W 100 - 100 LA 32 8.6 2.97 2.18 MR W 100 - 100 LA 32 33 17.80 1.8 MR V 100 - 100 LA 32 33 17.80 1.8 MR V 100 - 100 LA 32 1.03 2.33									6,88	2,92	26 726	1,32	MR	IV 160 - 112 MC	6 4 x 40
53.1 23.8 28.21 1.18 MR V 00 11 00 14 42 53.1 2.38 2.821 1.14 MR V 00 10 2 2 48.6 2.82 2 12 0.66															
53,1 2,38 2,21 1,14 MR V 80 - 90 LC 4 32 53,1 2,36 2,21 1,4 MR V 80 - 90 LC 4 32 53,1 2,42 268 2,24 MR V 100 LB 4 2 2 68 2,39 2,217 0,35 MR V 68 - 100 LB 4 4 2 68 2,39 2,217 0,35 MR V 68 - 100 LB 4 4 2 68 2,39 2,217 0,35 MR V 68 - 100 LA 4 25 8,66 2,97 2,566 MR V 10,12 2,36 11,68 MR V 16 - 100 LB 4 4 2 68 2,43 2,266 15 MR V 86 - 90 LC 4 25 10,3 2,37 18,68 18 NR V 10 LB 4 4 10,9 2,31 16,87 0,85 NR V 10,8 10,9 13,81 10,9 13,81 10,9 13,81 10,8 10,9 13,81 10,9<		53,1	2,38	2 821	1,18	MR V 80-100 LA 4	32		6,88		27 312	2,36	MR	IV 200 - 112 MC	6 4 x 40
53,1 2.88 2.247 3.08 2.5 8,1 1.07 1.2 8,8 2.87 2.5 8,8 2.87 2.5 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.0 1.2 1.6 1.4 1.2 1.6 1.2 1.2 1.6 1.2 1.6 1.7 1.0 1.8 1.4 1.2 1.6 1.0 1.4 1.2 1.6 1.6 1.7 1.6															
53,1 2.42 2.89 2.24 MR V 100 -100 LA 4 32 2 68 2.39 2.217 0.8 MR V 63 -100 LA 4 25 2 68 2.39 2.217 0.8 MR V 64 -100 LA 4 25 68 2.39 2.217 0.8 MR V 64 -100 LA 4 25 68 2.43 2.256 1.5 MR V 80 -100 LA 4 25 68 2.43 2.256 1.5 MR V 81 -100 LA 4 25 68 2.43 2.256 1.5 MR V 81 -100 LA 4 25 68 2.43 2.256 1.5 MR V 81 -100 LA 4 25 68 2.44 2.255 1.866 1.6 MR V 63 -100 LA 4 20 85 2.52 1.866 1.6 MR V 63 -100 LA 4 20 10.8 2.39 1707 1.6 MR V 126 -100 LB 4 4 85 2.54 1.866 1.8 MR V 64 -90 LC 4 20 10.8 3.03 <td< td=""><td></td><td>53,1</td><td>2,38</td><td>2 821</td><td>1,4</td><td>MR V 81 - 90 LC 4</td><td>32</td><td></td><td>8,8</td><td>2,87</td><td>20 588</td><td>0,95</td><td>MR</td><td>IV 126 - 112 MC</td><td>6 3,13 x 40</td></td<>		53,1	2,38	2 821	1,4	MR V 81 - 90 LC 4	32		8,8	2,87	20 588	0,95	MR	IV 126 - 112 MC	6 3,13 x 40
2 68 2.39 2.217 0.35 NR V 63 -100 L4 25 68 5.3 0.10 1.18 MR V 63 -100 L6 4 25 68 2.39 2.217 0.35 MR V 63 9.01 2.366 2.65 3.01 1.23 62 4.5 10.3 2.93 1.7800 1. MR V2 1.00 L8 4 5.5 1.03 2.93 1.7800 1.8 MR V126 1.00 L8 4 5.5 1.00 L8 4 7.07 0.9 MR V126 1.10 L8 4 5.5 1.00 L23 1.00 2.33 1.707 1.06 MR V126 1.10 L8 4 4 5.5 1.00 L3 2.33 1.707 1.06 MR V126 1.10 L8 L8 L8										,					
2 68 2.39 2.217 0.38 Imp V 58 -95 55 3.01 2.236 1.8 MP V 200 - 100 LB 4 4 55 68 2.48 2.256 1.5 MR V 80 - 100 LA 4 25 10.3 2.93 17 880 1.8 MR V 200 - 100 LB 4 55 68 2.443 2.256 1.5 MR V 80 - 100 LA 4 25 10.3 2.93 17 880 1.8 MR V 125 - 100 LB 4 3 68 2.43 2.256 1.6 MR V 125 - 100 LB 4 3 10.9 2.91 17 870 9.17 10.6 MR V 125 - 112 MC 6 2 68 2.52 1.866 0.85 MR V 63 - 90 LC 2 10.0 2.33 17 07 1.8 MR V 125 - 100 LB 4 3 85 2.54 1.887 1.6 MR V 63 - 90 LC 2.0 13.6 3.0	2														
2 68 2.39 2.217 0.95 MR V 64 90 L 4 25 10.3 2.93 17.880 1. MR 2V 125 10.6 2.93 17.017 10.6 MR V 125 11.6 MR V 125 10.6 3.03 17.017 10.6 MR V 10.6 1.03 17.90 1.2 MR V 10.6 1.03 17.90 1.2 MR V 10.6 1.03 17.90 1.2 MR V 10.0 1.0<	2							•							
66 2.43 2.256 1.8 MR V 81 - 100 LA 4 25 10,9 2.91 16.879 0.85 MR V 125 - 100 LB 4 3. 68 2.43 2.256 1.8 MR V 81 - 90 LC 4 25 10,9 2.91 16.879 0.95 MR V 125 - 112 MC 6 2. 68 2.43 2.252 1.866 0.85 MR V 36 - 100 LA 4 20 10.6 3.03 17.970 2.12 MR V 125 - 112 MC 6 2. 85 2.52 1.866 0.85 MR V 63 - 100 LA 4 20 13.6 2.99 13.86 1.6 MR V 125 - 100 LB 4 4. 85 2.52 1.866 1.8 MR V 84 - 90 LC 4 20 13.6 2.99 13.86 1.6 MR V 125 - 100 LB 4 3. 85 2.54 1.877 1.9 MR V 81 - 100 LA 4 20 13.6 2.99 13.86 1.25 MR V 125 - 100 LB 4	2														
68 2,43 2,256 1,8 MR V 100 - 100 LA 4 25 10,8 2,93 17,017 0,9 MR W 125 - 112 MC 6 2 85 2,52 1866 0,85 MR V 63 - 100 LA 4 20 10,6 3,03 17,970 1,8 MR W 126 - 112 MC 6 2 85 2,52 1866 1,6 MR V 63 - 90 LC 4 20 10,6 3,03 17,970 1,8 MR W 126 - 112 MC 6 2 85 2,52 1866 1,6 MR V 64 - 90 LC 4 20 13,6 2,99 13,66 1,06 MR V 126 - 100 LB 4 4 85 2,54 1887 1,9 MR V 80 - 100 LA 4 20 13,6 2,99 13,66 1,8 W 125 - 100 LB 4 3 85 2,54 1887 1,9 MR V 80 - 100 LA 4 20 13,6 3,05 14 H65 1,4 MR V 126 - 100 LB 4 3 85 2,54 1887 1,9 MR V 80 - 100 LA 4 20 13,6 3,0		68	2,43	2 256	1,8	MR V 81-100 LA 4	25								- 1
68 2.48 2 295 3 MR V 100 -100 LA 4 25 10.6 3.03 17 970 1.66 MR V 126 -112 MC 6 2 85 2.52 1 866 0.85 MR V 63 -100 LA 4 20 10.6 3.03 17 970 2.12 MR V 160 -100 LB 4 4 85 2.52 1 866 1.6 MR V 63 - 90 LC 4 20 13.6 2.99 13 866 1.6 MR V 125 - 100 LB 4 4 85 2.54 1 887 1.6 MR V 80 -100 LA 4 20 13.6 3.05 14 165 1.1 MR V 125 - 100 LB 4 3 85 2.54 1 887 1.6 MR V 80 - 100 LA 4 20 13.6 3.05 14 165 1.4 MR V 125 - 112 MC 6 2 85 2.54 1 887 1.9 MR V 80 - 100 LA 4 20 13.6 3.05 14 165 1.4 MR V 125 - 100 LB 4 3 3.6 14 165 1.4 MR V 100 - 100 LB 4 2 13.6 3.05 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td>1 1 1 m</td><td></td><td></td></td<>									1				1 1 1 m		
ist 2.52 1 866 1 MR V 64 - 100 LA + 4 20 10.6 3.03 17.970 2.12 MR V 101 - 100 LB 4 4 85 2.52 1 866 I MR V 64 - 90 LC 4 20 13.6 2.99 13.866 1.06 MR V 125 - 100 LB 4 3.3 85 2.54 1 887 1.6 MR V 80 - 90 LC 4 20 13.6 3.05 14 165 1.4 MR V 126 - 100 LB 4 3.3 85 2.54 1 887 1.6 MR V 80 - 90 LC 4 20 13.6 3.05 14 165 1.4 MR V 126 - 110 MC 6 2.3 84.6 2.56 1 910 1.8 MR V 80 - 90 LC 4 20 13.4 3.09 14 563 2.3 MR V 100 - 100 LB 4 3.3 84.6 2.56 1 910 1.8 MR V 80 - 112 M 6 13 13.4 3.09 14 563 2.3 MR V 100 - 100 LB 4 3.3 84.6 2.55 1 513 1.25 MR V 80 - 90 LC 4 16 </td <td></td> <td></td> <td>2,48</td> <td>2 295</td> <td></td> <td></td> <td>25</td> <td></td> <td>10,8</td> <td>2,93</td> <td>17 017</td> <td>1,06</td> <td>MR</td> <td>IV 126 -112 MC</td> <td>6 2,54 x 40</td>			2,48	2 295			25		10,8	2,93	17 017	1,06	MR	IV 126 -112 MC	6 2,54 x 40
85 2,52 1866 0,85 MR V 83 90 LC 4 20 13,6 2,99 13 66 1.6 MR V 200 10,6 3,1 18 399 3,15 MR V 200 10,6 3,1 18 399 3,15 MR V 200 10,6 3,1 18 399 3,15 MR V 200 10,6 3,1 13,6 2,99 13 66 1,06 1,16 1,18 MR V 125 110 10,18 4 20 13,6 2,99 13 66 1,06 1,07 10,18 MR V 10,0 10,4 20 13,6 3,05 14 165 1,18 MR V 10,0 10,0 14 3,09 14 563 2,36 MR V 10,0 112 M6 13 13,4 3,09 14 563 2,36 MR V 10,0 10,0 MR V 10,0 13,10					0,85										
85 2,54 1 887 1,6 MR V 80 -100 LA 4 20 13,6 2,99 13 866 1,25 MR V 125 -110 LB 4 3, 85 2,54 1 887 1,6 MR V 80 -90 LC 4 20 13,6 3,05 14 165 1,4 MR IV 125 -112 MC 6 2, 85 2,54 1 887 1,9 MR V 80 -90 LC 4 20 13,4 3,09 14 563 2 MR IV 126 -110 LB 4 3, 84,6 2,56 1 910 2,12 MR V 80 -112 M 6 13 13,4 3,09 14 563 2 MR IV 100 -100 LB 4 3, 84,6 2,56 1 910 2,12 MR V 80 -100 LA 4 10 17,2 303 11 17 0.6 MR V 100 -100 LB 4 2, 17,2 303 11 17 0.6 NR V 125 -100 LB 4 2, 106 2,55 1 513 1,06 MR V 63 - 90 LC 4 16 17,5 2,99 10 798 0,95 MR V 125 -132 S 6 6 1		85	2,52	1 866		MR V 63 - 90 LC 4	20		10,6	3,1	18 399	3,15		IV 200 - 100 LB	4 4 × 40
85 2.54 1 887 1.9 MR V 81 - 100 LA 4 20 13,6 3,05 14 165 1,18 MR V 125 - 112 MC 6 2, 85 2.54 1 887 1,9 MR V 81 - 90 LC 4 20 13,6 3,05 14 165 1,4 MR V 125 - 112 MC 6 2, 85 2.54 1 887 1,9 MR V 81 - 90 LC 4 20 13,4 3,09 14 563 2 MR V 100 - 100 LB 4 3, 84,6 2.56 1 910 2,12 MR V 81 - 112 M 6 13 13,4 3,09 14 563 2,6 MR V 100 - 100 LB 4 2, 106 2.55 1 513 1,26 MR V 63 - 100 LA 4 16 16,7 3,02 11 351 0,75 MR V 100 - 100 LB 4 2, 106 2.55 1 513 1,26 MR V 63 - 90 LC 4 16 16,8 3,06 11 502 1,4 MR V 100 - 100 LB 4 2, 106 2.58 1 529 2 MR V 80 - 90 LC 4 16					1							L '			
85 2,54 1 887 1,9 MR V 81 - 90 LC 4 20 13,4 3,09 14 563 2,4 MR V 160 - 100 LB 4 3,309 14 563 2,36 MR IV 161 - 100 LB 4 3,309 14 563 2,36 MR IV 161 - 100 LB 4 3,309 14 563 2,36 MR IV 161 - 100 LB 4 3,309 14 563 2,36 MR IV 161 - 100 LB 4 3,309 14 563 2,36 MR IV 161 - 100 LB 4 3,309 14 563 2,36 MR IV 161 - 100 LB 4 3,309 14 563 2,36 MR IV 161 - 100 LB 4 3,309 14 563 2,36 MR IV 161 - 100 LB 4 4,309 14 563 2,36 MR IV 161 - 100 LB 4 4,309 16,7 3,03 11 117 0,85 MR IV 100 - 112 MC 6 2 16,7 3,06 11 502 1,18 MR IV 126 - 110 LB 4 2,1 16,6 3,06 11 502 1,18 MR IV 126 - 110 LB 4 2,1 17,5 2,99 10 798 0,95 MR V 126 - 112 MC 6 10,6 1,58 1,26 1,26 1,26 1,26 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>13,6</td> <td>3,05</td> <td>14 165</td> <td>1,18</td> <td>MR</td> <td>IV 125 - 112 MC</td> <td>6 2,54 x 32</td>									13,6	3,05	14 165	1,18	MR	IV 125 - 112 MC	6 2,54 x 32
84,6 2,56 1 910 2,12 MR V 81 - 112 M 6 13 106 2,55 1 513 1,06 MR V 100 - 100 LA 4 20 106 2,55 1 513 1,25 MR V 63 - 100 LA 4 16 106 2,55 1 513 1,25 MR V 63 - 90 LC 4 16 106 2,55 1 513 1,25 MR V 64 - 90 LC 4 16 106 2,55 1 513 1,25 MR V 80 - 100 LA 4 16 106 2,55 1 513 1,25 MR V 64 - 90 LC 4 16 106 2,58 1 529 2 MR V 80 - 90 LC 4 16 106 2,58 1 529 2 MR V 80 - 90 LC 4 16 106 2,58 1 529 2,36 MR V 81 - 90 LC 4 16 106 2,58 1 529 2,36 MR V 81 - 90 LC 4 16 1131 2,58 1 244 1,4 MR V 63 - 90 LC 4 13 17,5 3,07		85	2,54	1 887	1,9	MR V 81 - 90 LC 4	20								
85 2,58 1 913 3 MR V 100 - 100 LA 4 20 106 2,55 1 513 1,06 MR V 63 - 100 LA 4 16 106 2,55 1 513 1,25 MR V 64 - 100 LA 4 16 106 2,55 1 513 1,26 MR V 63 - 90 LC 4 16 106 2,55 1 513 1,25 MR V 63 - 90 LC 4 16 106 2,55 1 513 1,26 MR V 80 - 100 LA 4 16 106 2,58 1 529 2 MR V 80 - 100 LA 4 16 106 2,58 1 529 2 MR V 80 - 90 LC 4 16 106 2,58 1 529 2,36 MR V 81 - 90 LC 4 16 131 2,58 1 529 2,36 MR V 81 - 90 LC 4 13 131 2,58 1 244 1,4 MR V 64 - 100 LA 4 13 131 2,58 1 244 1,4 MR V 63 - 90 LC 4 13 131 2,61 1									· · · ·	· ·					
106 2,55 1 513 1,06 MR V 63 - 100 LA*4 16 106 2,55 1 513 1,25 MR V 64 - 100 LA*4 16 106 2,55 1 513 1,25 MR V 64 - 100 LA*4 16 106 2,55 1 513 1,25 MR V 64 - 90 LC 4 16 106 2,58 1 529 2 MR V 80 - 90 LC 4 16 106 2,58 1 529 2,36 MR V 81 - 100 LA 4 16 17,5 2,99 10 798 1,18 MR V 126 - 112 MC 6 106 2,58 1 529 2,36 MR V 81 - 90 LC 4 16 17,5 2,99 10 798 1,18 MR V 126 - 132 S 6 106 2,58 1 529 2,36 MR V 83 - 90 LC 4 16 16,7 3,18 11 983 3 MR V 160 - 102 LB 4 3, 131 2,58 1 244			2,58	1 913	3		20							IV 100 - 100 LB* IV 100 - 112 MC	4 2,54 x 40 6 2 x 32
106 2,55 1 513 1,06 MR V 63 - 90 LC 4 16 106 2,55 1 513 1,25 MR V 64 - 90 LC 4 16 106 2,58 1 529 2 MR V 80 - 100 LA 4 16 106 2,58 1 529 2 MR V 80 - 100 LA 4 16 106 2,58 1 529 2 MR V 81 - 100 LA 4 16 106 2,58 1 529 2 MR V 81 - 90 LC 4 16 106 2,58 1 529 2,36 MR V 81 - 90 LC 4 16 131 2,58 1 244 1,18 MR V 63 - 100 LA*4 13 17,5 3,07 11 068 1,8 MR V 161 - 112 MC 6 16,7 3,18 11 983 3 MR V 161 - 112 MC 6 16,7 3,18 11 983 3,08 MR V 161 - 112 MC 6<									16,8	3,06	11 502	1,18	MR	IV 125 - 100 LB	4 2,54 x 40
106 2,58 1 529 2 MR V 80 - 100 LA 4 16 106 2,58 1 529 2,36 MR V 81 - 100 LA 4 16 106 2,58 1 529 2,36 MR V 81 - 100 LA 4 16 106 2,58 1 529 2 MR V 80 - 90 LC 4 16 106 2,58 1 529 2,36 MR V 81 - 90 LC 4 16 131 2,58 1 244 1,18 MR V 63 - 100 LA*4 13 131 2,58 1 244 1,18 MR V 63 - 90 LC 4 13 131 2,58 1 244 1,4 MR V 63 - 90 LC 4 13 131 2,58 1 244 1,4 MR V 63 - 90 LC 4 13 131 2,61 1 256 2,24 MR V 80 - 90 LC <td></td> <td>106</td> <td>2,55</td> <td>1 513</td> <td>1,06</td> <td>MR V 63 - 90 LC 4</td> <td>16</td> <td></td> <td>17,5</td> <td></td> <td>10 798</td> <td></td> <td></td> <td>V 125 - 112 MC</td> <td>6 63</td>		106	2,55	1 513	1,06	MR V 63 - 90 LC 4	16		17,5		10 798			V 125 - 112 MC	6 63
106 2,58 1 529 2,36 MR V 81 - 100 LA 4 16 106 2,58 1 529 2 MR V 80 - 90 LC 4 16 106 2,58 1 529 2,36 MR V 81 - 90 LC 4 16 106 2,58 1 529 2,36 MR V 81 - 90 LC 4 16 16,7 3,18 11 983 2,5 MR IV 160 - 100 LB 4 3, 131 2,58 1 244 1,4 MR V 63 - 90 LC 4 13 17,5 3,07 11 068 1,8 MR V 160 - 112 MC 6 131 2,58 1 244 1,4 MR V 64 - 90 LC 4 13 17,5 3,07 11 068 2,12 MR V 161 - 132 S 6 131 2,61 1 256 2,24 MR V 80 - 100 LA 4 13 17,5 3,07 11 068 8,1				1 513 1 529											
106 2,58 1 529 2,36 MR V 81 - 90 LC 4 16 16,7 3,18 11 983 3 MR IV 161 - 100 LB 4 3, 131 2,58 1 244 1,18 MR V 63 - 100 LA*4 13 17,5 3,07 11 068 1,8 MR V 161 - 100 LB 4 3, 131 2,58 1 244 1,4 MR V 64 - 100 LA*4 13 17,5 3,07 11 068 1,8 MR V 161 - 112 MC 6 17,5 3,07 11 068 1,8 MR V 161 - 112 MC 6 17,5 3,07 11 068 1,8 MR V 161 - 100 LB 4 3, 131 2,58 1 244 1,4 MR V 64 - 90 LC 4 13 17,5 3,07 11 068 1,8 MR V 161 - 102 LB 4 2 131 2,61 1 256 2,24 MR V 80 - 90 LC 4 13 21,3 3,08 9 142 0,85 MR IV 100 - 100 LB 4 2 2 3,14 8 995 1,06 MR IV 100 - 112 MC 6 2 2		106	2,58	1 529	2,36	MR V 81-100 LA 4	16		17,5	2,99	10 798	1,18	MR	V 126 -132 S	6 63
131 2,58 1 244 1,18 MR V 63 - 100 LA*4 13 131 2,58 1 244 1,4 MR V 64 - 100 LA*4 13 131 2,58 1 244 1,4 MR V 64 - 100 LA*4 13 131 2,58 1 244 1,4 MR V 64 - 90 LC 4 13 131 2,58 1 244 1,4 MR V 64 - 90 LC 4 13 131 2,61 1 256 2,24 MR V 80 - 100 LA 4 13 131 2,61 1 256 2,24 MR V 80 - 100 LA 4 13 131 2,61 1 256 2,24 MR V 80 - 90 LC 4 13 131 2,61 1 256 2,65 MR V 81 - 90 LC 4 13 131 2,61 1 256 2,65 MR V 81 - 90 LC 4 13 131 2,61 1 256 2,65 MR V 80 - 90 LC 4 13 131 2,64				1 529											
131 2,58 1 244 1,18 MR V 63 - 90 LC 4 13 131 2,58 1 244 1,4 MR V 63 - 90 LC 4 13 131 2,58 1 244 1,4 MR V 64 - 90 LC 4 13 131 2,61 1 256 2,24 MR V 80 - 100 LA 4 13 131 2,61 1 256 2,24 MR V 80 - 100 LA 4 13 131 2,61 1 256 2,24 MR V 80 - 90 LC 4 13 131 2,61 1 256 2,24 MR V 80 - 90 LC 4 13 131 2,61 1 256 2,65 MR V 81 - 90 LC 4 13 131 2,61 1 256 2,65 MR V 81 - 90 LC 4 13 170 2,64 978 1,5 MR V 63 - 100 LA * 4 10 21 3,16 9518 1,9 MR V 125 - 100 LB 4 2, 170 2,64 978 <			2,58	1 244	1,18				17,5	3,07	11 068	1,8	MR	V 160 -112 MC	6 63
131 2,58 1 244 1,4 MR V 64 - 90 LC 4 13 131 2,61 1 256 2,24 MR V 80 - 100 LA 4 13 131 2,61 1 256 2,24 MR V 80 - 100 LA 4 13 131 2,61 1 256 2,65 MR V 81 - 100 LA 4 13 131 2,61 1 256 2,24 MR V 81 - 100 LA 4 13 131 2,61 1 256 2,24 MR V 81 - 90 LC 4 13 131 2,61 1 256 2,65 MR V 81 - 90 LC 4 13 131 2,61 1 256 2,65 MR V 81 - 90 LC 4 13 170 2,64 978 1,5 MR V 63 - 100 LA * 4 10 21 3,16 9518 1,6 MR V 125 - 110 LB 4 2, 170 2,64 978 1,8 MR V 63 - 100 LA * 4 10 22 3,11 8 902 1,5									17,5	3,07	11 068	1,8		V 160 -132 S	
131 2,61 1 256 2,65 MR V 81 - 100 LA 4 13 131 2,61 1 256 2,24 MR V 80 - 90 LC 4 13 131 2,61 1 256 2,24 MR V 81 - 90 LC 4 13 131 2,61 1 256 2,65 MR V 81 - 90 LC 4 13 170 2,64 978 1,5 MR V 81 - 90 LC 4 10 21 3,16 9 518 1,6 MR IV 100 - 112 MC 6 2 170 2,64 978 1,5 MR V 83 - 100 LA * 4 10 21 3,16 9 518 1,6 MR IV 125 - 100 LB 4 2, 170 2,64 978 1,5 MR V 63 - 100 LA * 4 10 22 3,11 8 902 1,25 MR V 125 - 112 MC 6 170 2,64 978 1,8 MR V 63 - 90 LC 4 10 22 3,11 8 902 1,25 MR V 125 - 132 S 6 6 170		131	2,58	1 244	1,4	MR V 64 - 90 LC 4	13		17,5						
131 2,61 1 256 2,24 MR V 80 - 90 LC 4 13 131 2,61 1 256 2,65 MR V 81 - 90 LC 4 13 170 2,64 978 1,5 MR V 63 - 100 LA*4 10 170 2,64 978 1,8 MR V 63 - 100 LA*4 10 170 2,64 978 1,5 MR V 63 - 100 LA*4 10 170 2,64 978 1,5 MR V 63 - 90 LC 4 10 170 2,64 978 1,5 MR V 63 - 90 LC 4 10 170 2,64 978 1,5 MR V 63 - 90 LC 4 10 170 2,64 978 1,8 MR V 63 - 90 LC 4 10 22 3,11 8 902 1,5 MR V 125 - 112 MC 6 170 2,64 978 1,8 MR V 64 - 90 LC 4 10 22 3,11 8 902 1,25 MR V 125 - 132 S 6		131	2,61	1 256	2,65	MR V 81-100 LA 4	13					· · ·			
170 2,64 978 1,5 MR V 63 - 100 LA*4 10 21 3,16 9 518 1,9 MR IV 126 - 100 LB 4 2, 170 2,64 978 1,8 MR V 64 - 100 LA*4 10 22 3,11 8.902 1,25 MR V 125 - 112 MC 6 22 3,11 8.902 1,55 MR V 125 - 112 MC 6 22 3,11 8.902 1,5 MR V 126 - 112 MC 6 22 3,11 8.902 1,55 MR V 126 - 112 MC 6 22 3,11 8.902 1,25 MR V 126 - 112 MC 6 22 3,11 8.902 1,25 MR V 126 - 112 MC 6 22 3,11 8.902 1,25 MR V 125 - 132 S 6 170 2,64 978 1,8 MR V 64 - 90 LC 10 22 3,11 8.902 1,25 MR V 125 - 132 5									22	3,04	8 699	0,75	MR	V 100 -112 MC	5 50
170 2,64 978 1,8 MR V 64 - 100 LA*4 10 22 3,11 8 902 1,25 MR V 125 - 112 MC 6 170 2,64 978 1,5 MR V 63 - 90 LC 4 10 22 3,11 8 902 1,5 MR V 125 - 112 MC 6 170 2,64 978 1,8 MR V 63 - 90 LC 4 10 22 3,11 8 902 1,5 MR V 126 - 112 MC 6 170 2,64 978 1,8 MR V 64 - 90 LC 4 10 22 3,11 8 902 1,25 MR V 125 - 132 S 6			2,64	978	1,5				21	3,16	9 518	1,9			4 2,54 x 32
170 2,64 978 1,8 MR V 64 - 90 LC 4 10 22 3,11 8 902 1,25 MR V 125 - 132 S 6			2,64	978	1,8	MR V 64-100 LA*4									
		170	2,64	978	1,8	MR V 64 - 90 LC 4	10		22	3,11	8 902	1,25	MR	V 125 - 132 S	6 50
		170 170	2,66	986	2,8	MR V 80-100 LA 4 MR V 81-100 LA 4	10 10		22 21,4	3,11 3,37	8 902 9 924	1,5	MR MR		

i

7

7

7

7

x 63

x 50

x 50

x 50 5,15 x 32

x 40

x 40

x 40

5,15 x 25

3,13 x 40

3,13 x 40

3,17 x 40 3,17 x 40 3,17 x 40

5,15 x 20

2,54 x 40 2,54 x 40

2,03 x 32

63 3,17 x 32

3,17 x 32

63

63

63

2,54 x 32

2,54 x 32

50

50

3,17 x 25

3,17 x 25

50

50 2 x 32 2,54 x 25 2,54 x 25

2,03 x 20

63

63

40

40 3,17 x 20

3,17 x 20

63

63

40

40

50

32

2,54 x 20

2,54 x 20

50

50

32

32

3,17 x 16

3,17 x 16

50

50

x 20

x 25

4 3,17 x 40

6 3,8 x 63

6 3,8 x 50

4 4 x 63

4 4

6 3,8 x 40

4 4

4 4

4 4

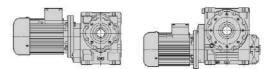
4 4

4 4

4

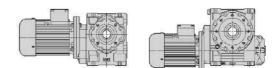
4

4

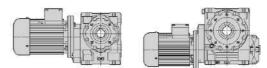

4 2

2

4 4

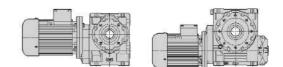

P ₁	n ₂	P ₂	M ₂	fs	Gear reducer - mo	otor	i	P ₁		1 2	P_2	M_2	fs	Ge	ar reducer - motor
hp 1)	rpm	hp	lb in		2)			hp 1)	r;	mc	hp	lb in			2)
4	21,4 22 22 22 22	3,37 3,17 3,17 3,17 3,17	9 924 9 075 9 075 9 075 9 075	3,15 2,36 2,8 2,36	MR IV 161 - 100 L MR V 160 - 112 M MR V 161 - 112 M MR V 161 - 112 M MR V 160 - 132 S	/IC 6 /IC 6	3,17 x 25 50 50 50	4	243 243 243 243 243	3	3,66 3,66 3,68 3,68 3,68	949 949 955 955	1,32 1,6 2,5 3	MR MR MR MR	V 63 -100 LB*4 V 64 -100 LB*4 V 80 -100 LB 4 V 81 -100 LB 4
	26,6 27 27,5 26,8 26,8 27,1 27,1 27 27,5 27,5 27,5 27,5 27,5	3,15 3,04 3,14 3,36 3,36 3,39 3,39 3,12 3,12 3,12 3,17 3,17 3,17 3,17	7 475 7 095 7 192 7 907 7 882 7 882 7 278 7 278 7 269 7 269 7 269 7 269 7 269	1,12 0,8 1,06 1,7 2 2,36 1,25 1,5 1,7 2 1,7 2	MR IV 100 - 100 L MR V 100 - 100 L MR V 100 - 112 M MR IV 125 - 100 L MR IV 125 - 100 L MR IV 126 - 100 L MR IV 126 - 112 M MR V 125 - 100 L MR V 125 - 100 L MR V 125 - 100 L MR V 125 - 112 M MR V 125 - 112 M MR V 125 - 112 M MR V 125 - 132 S MR V 125 - 132 S MR V 126 - 132 S	.B 4 .B 4 .B 4 .B 4 .B 4 .B 4 .B 6 .C 6 .B 4 .B 4 .B 4 .B 4 .C 6 .C 6 .C 6 .C 6 .C 6 .C 6 .C 6 .C 6	$\begin{array}{c} 2 \\ 63 \\ 40 \\ 2,54 \\ x \\ 254 \\ x \\ 254 \\ x \\ 254 \\ x \\ 16 \\ 2,54 \\ x \\ 16 \\ 63 \\ 40 \\ 40 \\ 40 \\ 40 \\ 40 \end{array}$	5,4 4,1	5 6 7 8 8 8 8 8),6),6	3,81 3,97 3,73 3,86 4,08 3,91 4,02 3,9 4,04 4,04 4,04 4,14	52 322 43 245 34 883 36 034 35 519 28 964 29 795 23 840 23 960 23 960 23 960 23 960 23 951	1,9 2,65 0,8 1,4 3,35 0,95 1,12 1,9 0,9 1,32 1,6 2,36	MR MR MR MR MR MR MR MR MR MR	IV 250 -132 M 6 IV 250 -132 M 6 IV 161 -112 M 4 IV 200 -112 M 4 IV 250 -132 M 6 IV 160 -112 M 4 IV 160 -112 M 4 IV 161 -112 M 4 IV 1200 -112 M 4 IV 126 -112 M 4 IV 126 -112 M 4 IV 161 -112 M 4 IV 200 -112 M 4
2,22 2,22 2,51	34 34,4 34 34,4 34,4 33,5 34 34 34,4 34,	3,18 3,18 3,14 3,25 3,15 3,21 3,21 3,21 3,21 3,21 3,21 3,26 3,26	5 887 5 887 5 757 6 019 5 841 5 879 5 879 6 419 5 950 5 950 5 950 5 979 5 979	0,75 0,9 0,8 1,4 1,32 1,32 2,12 1,6 2 2,12 2,12 2,12	MR IV 80 - 100 L MR IV 81 - 100 L MR V 81 - 112 M MR IV 100 - 100 L MR V 100 - 100 L MR V 100 - 100 L MR V 100 - 102 M MR V 100 - 132 S MR V 100 - 132 S MR V 125 - 100 L MR V 125 - 100 L MR V 126 - 100 L MR V 125 - 132 N MR V 125 - 132 N	.B*4 MC 6 .B 4 .B 4 MC 6 .B 4 .B 4 .B 4 .B 4 .B 4 MC 6	2 x 25 2 x 25 32 2 x 25 50 32 32 2,54 x 20 50 50 32 32 32 32		13 13 13 13 13 13 13 13 16 16 16 16 16	3,2 3,6 3,4 3,4 3,4 5,5 5,8 5,8 5,8 5,9 7,5	4,23 3,99 4,13 4,13 4,21 4,3 4,08 4,08 4,14 3,99	20 183 18 488 19 417 19 417 19 811 16 407 15 336 15 336 15 423 14 397	0,9 0,8 0,95 1,5 1,8 2,8 1,18 0,9 1,06 1,25 0,85	MR MR MR MR MR MR MR MR	2IV 126 -112 M 4 IV 125 -112 M 4 IV 126 -112 M 4 IV 160 -112 M 4 IV 161 -112 M 4 IV 200 -112 M 4 IV 126 -132 M 6 V 126 -132 M 6
2,83 2,83 3,06 2,79	42,5 42,5 42,5 44 42,5 42,5 44 44 41,9 42,5	3,36 3,36 3,17 3,23 3,42 3,25 3,29 3,29 3,29 3,47 3,27	4 980 4 980 4 697 4 621 5 067 4 814 4 720 4 720 5 212 4 846	0,75 0,9 0,8 1,06 1,5 1,32 1,7 1,7 2,5 2,12	MR IV 80 - 100 L MR IV 81 - 100 L MR V 100 - 100 L MR V 100 - 100 L MR V 100 - 102 L MR V 100 - 132 S MR IV 125 - 100 L MR V 125 - 100 L	.B*4 .B 4 .C 6 .B 4 .B 4 .C 6 .C 6 .B 4	2 x 20 40 25 2 x 20 40 25 25 2,54 x 16 40	j] T		5,7 7,5 7,5 7,5 1 2	4,24 4,09 4,09 4,19 4,22 4,22 4,14 4,14 4,5 4,5	15 977 15 977 14 757 14 757 15 123 12 691 12 691 11 869 11 869 13 232 13 232	1,9 2,24 1,32 1,6 2,65 1,18 1,4 0,95 1,12 2 2,36	MR MR MR MR MR MR MR MR MR	IV 160 -112 M 4 IV 161 -112 M 4 V 160 -132 M 6 V 161 -132 M 6 V 200 -132 M 6 IV 125 -112 M 4 IV 125 -112 M 4 V 125 -132 M 6 V 126 -132 M 6 IV 160 -112 M 4 IV 161 -112 M 4
3,1 3,1 2,79 3,35	53,1 53,1 53,1 53,1 53,1 53,1 53,1 53,1	3,42 3,42 3,24 3,24 3,46 3,3 3,35	4 053 4 053 3 846 3 846 4 102 3 913 3 972	0,95 1,18 0,85 1 1,8 1,7 2,65	MR IV 80 - 100 L MR IV 81 - 100 L MR V 80 - 100 L MR V 80 - 100 L MR V 100 - 100 L	.B*4 .B 4 .B 4 .B 4 .B 4	2 x 16 2 x 16 32 32 2 x 16 32 32 32		22 22 26 26 26	2 5,6 5,8 5,8 7,1	4,22 4,22 4,22 4,49 4,49 4,49 4,49 4,15	12 099 12 099 9 967 10 542 10 542 10 457 9 704	1,8 2,12 0,85 1,25 1,5 1,7 0,95	MR MR MR MR MR MR	V 160 -132 M 6 V 161 -132 M 6 IV 100 -112 M 4 IV 125 -112 M 4 IV 126 -112 M 4 IV 126 -132 M 6 V 125 -112 M 4
3,1	68 68 68	3,32 3,32 3,38	3 076 3 076 3 129	1,12 1,32 2,12	MR V 80 - 100 L MR V 81 - 100 L MR V 100 - 100 L	.B 4	25 25 25		27	7 7,5	4,15 4,23 4,23	9 704 9 692 9 692	1,12 1,25 1,5	MR MR MR	V 126 - 112 M 4 V 125 - 132 M 6 V 126 - 132 M 6
2,57	85 85 85 84,6 85	3,43 3,47 3,47 3,5 3,52	2 544 2 573 2 573 2 605 2 609	0,75 1,18 1,4 1,5 2,24	MR V 64 - 100 L MR V 80 - 100 L MR V 81 - 100 L MR V 81 - 112 N MR V 81 - 112 N MR V 100 - 100 L	.B 4 .B 4 MC 6	20 20 20 13 20		26 26 27 27 27	5,8 5,8 7 7 7,5	4,56 4,26 4,23 4,23 4,33	10 742 10 742 9 883 9 883 9 935	2,5 3 1,7 2 2,36	MR MR MR MR MR	IV 160 - 112 M 4 IV 161 - 112 M 4 V 160 - 112 M 4 V 161 - 112 M 4 V 161 - 112 M 4 V 160 - 132 M 6
2,79 2,79		3,48 3,48 3,51 3,51 3,55	2 063 2 063 2 085 2 085 2 085 2 105	0,75 0,9 1,4 1,7 2,8	MR V 63 - 100 L MR V 64 - 100 L MR V 80 - 100 L MR V 81 - 100 L MR V 81 - 100 L	.B*4 .B*4 .B 4 .B 4	16 16 16 16 16		33	l l l,4 3,5	4,33 4,33 4,2 4,28 4,55 4,55	9 935 8 026 7 788 7 839 8 559 8 559	2,8 1,06 0,75 1 1,6	MR MR MR MR MR	V 161 - 132 M 6 IV 100 - 112 M 4 V 100 - 112 M 4 V 100 - 132 M 6 IV 125 - 112 M 4
3,02 3,02	131	3,52 3,52 3,55 3,55 3,55 3,59	1 696 1 696 1 713 1 713 1 729	0,9 1,06 1,7 2 3,15	MR V 63 - 100 L MR V 64 - 100 L MR V 80 - 100 L MR V 81 - 100 L MR V 81 - 100 L MR V 100 - 100 L	.B*4 .B*4 .B 4 .B 4	13 13 13 13 13 13		34 34	 ,4 ,4	4,55 4,28 4,28 4,35 4,35 4,63	8 559 7 933 7 933 7 972 7 972 8 725	1,9 1,25 1,5 1,6 1,9 3,15	MR MR MR MR MR MR	IV 126 -112 M 4 V 125 -112 M 4 V 126 -112 M 4 V 125 -132 M 6 V 126 -132 M 6 IV 160 -112 M 4
	170 170 170 170	3,6 3,6 3,62 3,62 3,62	1 334 1 334 1 344 1 344	1,12 1,32 2 2,36	MR V 63 - 100 L MR V 64 - 100 L MR V 80 - 100 L MR V 81 - 100 L	.B*4 .B*4 .B 4	10 10 10 10		33 34 34	3,5 1	4,63 4,35 4,35 4,56	8 725 8 072 8 072 6 755	3,75 2,24 2,65 1,12	MR MR MR MR	IV 161 - 112 M 4 V 160 - 112 M 4 V 161 - 112 M 4 IV 161 - 112 M 4 IV 100 - 112 M 4

P ₁ hp	n ₂ rpm	P ₂ hp	M ₂ Ib in	fs	Gea	ar reducer - motor	i	P ₁ hp	n ₂ rpm	P ₂ hp	M ₂ Ib in	fs	Gear reducer - motor	i
1)						2)		1)					2)	
() 5,4 3,35 3,1 3,71 3,94 4,29	42,5 44 41,9 42,5 42,5 42,5 44 44 42,5 53,1 53,1 53,1 53,1 53,1 53,1 53,1 53	$\begin{array}{c} 4,33\\ 4,39\\ 4,62\\ 4,36\\ 4,59\\ 4,59\\ 4,59\\ 4,44\\ 4,45\\ 4,46\\ 4,46\\ 4,46\\ 4,46\\ 4,43\\ 4,46\\ 4,46\\ 4,43\\ 4,5\\ 4,67\\ 4,63\\ 4,69\\ 4,72\\ 4,69\\ 4,72\\ 4,69\\ 4,72\\ 4,69\\ 4,73\\ 4,74\\ 4,78\\ 4,83\\ 4,83\end{array}$	6 419 6 293 6 950 6 950 6 950 6 461 6 576 6 576 6 587 6 587 5 128 5 469 5 217 5 296 5 296 4 102 4 102 4 102 4 102 4 102 4 102 3 431 3 431 3 431 3 431 3 431 3 431 3 438 2 780 2 780 2 806 2 284 2 284 2 284 2 285 1 792 1 792	0,8 1 1,6 2,24 0,85 1 1,7 2	MR MR MR MR MR MR MR MR MR MR MR MR MR M	2) V 100 - 112 M 4 V 100 - 132 M 6 IV 125 - 112 M 4 IV 126 - 112 M 4 V 125 - 112 M 4 V 125 - 112 M 4 V 126 - 132 M 6 V 126 - 132 M 6 V 160 - 112 M 4 V 161 - 112 M 4 V 100 - 112 M 4 V 100 - 112 M 4 V 100 - 112 M 4 V 125 - 112 M 4 V 100 - 112 M 4 V 80 - 112 M 4 <tr< td=""><td>40 25 2,54 × 16 2,54 × 16 40 25 25 40 32 2 32 32 32 32 32 32 32 25 25 25 25 25 25 25 20 20 20 20 13 20 16 16 16 16 13 13 13 10 10</td><td>7,5</td><td>16,7 16,6 16,6 17,5 17,5 21 20,9 20,9 22,1,4 21,4 20,8 22,2 20,8 22,2 20,8 22,2 20,8 22,2 20,8 22,2 20,8 22,2 20,8 22,2 20,8 22,2 20,8 22,2 26,8 26,8 26,2 27,5 27,5 27,5 26,8 26,8 26,6 26,6 26,6 26,6 26,6 26,6</td><td>5,83 5,77 5,72 5,62 5,89 5,76 5,8 5,71 5,71 5,73 5,71 5,73 5,93 5,81 6,18 5,93 5,81 6,17 5,9 5,95 5,71 5,95 5,81 6,28 6,28 6,25 6,3</td><td>21 969 21 881 20 290 20 290 20 290 20 794 17 450 17 450 17 450 17 200 16 320 18 194 18 194 17 967 16 637 16 637 16 637 18 311 17 042 14 496 14 216 13 344 13 344 13 326 13 326 14 770 14 816 14 816 14 816 14 766</td><td>$\begin{array}{c} 1,6\\ 1,25\\ 0,95\\ 1,5\\ 2,24\\ 1,9\\ 0,85\\ 1\\ 0,75\\ 0,9\\ 1,5\\ 1,5\\ 1,7\\ 1,5\\ 1,8\\ 1,32\\ 1,6\\ 3\\ 2,5\\ 0,9\\ 1,12\\ 1\\ 1,18\\ 0,85\\ 0,9\\ 1,06\\ 1,9\\ 2,24\\ 1,7\\ 2\\ 2\end{array}$</td><td>MR IV 161 - 112 MC 4 MR IV 160 - 132 S 4 MR IV 161 - 132 S 4 MR IV 161 - 132 MB 6 MR V 161 - 132 MB 6 MR V 160 - 132 MB 6 MR V 160 - 132 MB 6 MR V 160 - 132 MB 6 MR V 200 - 132 MB 6 MR IV 125 - 112 MC 4 MR IV 125 - 132 MB 6 MR IV 125 - 132 S 4 MR IV 126 - 132 MB 6 MR IV 126 - 132 MB 6 MR IV 160 - 132 S 4 MR IV 160 - 132 MB 6 MR IV 160 - 132 MB 6 MR IV 160 - 132 MB 6 MR V 160 - 132 MB 6 MR V 160 - 132 MB 6 MR V 125 - 112 MC 4 MR V 125 - 112 MC 4 MR IV 125 - 112 MC 4 MR IV 125 - 132 S 4 MR IV 125 - 132 MB 6 MR IV 126 - 112 MC 4 MR IV 126 - 132 S 4 MR IV 126 - 132 MB 6<td>3,17 x 2 2,56 x 2 2,56 x 2</td></td></tr<>	40 25 2,54 × 16 2,54 × 16 40 25 25 40 32 2 32 32 32 32 32 32 32 25 25 25 25 25 25 25 20 20 20 20 13 20 16 16 16 16 13 13 13 10 10	7,5	16,7 16,6 16,6 17,5 17,5 21 20,9 20,9 22,1,4 21,4 20,8 22,2 20,8 22,2 20,8 22,2 20,8 22,2 20,8 22,2 20,8 22,2 20,8 22,2 20,8 22,2 20,8 22,2 26,8 26,8 26,2 27,5 27,5 27,5 26,8 26,8 26,6 26,6 26,6 26,6 26,6 26,6	5,83 5,77 5,72 5,62 5,89 5,76 5,8 5,71 5,71 5,73 5,71 5,73 5,93 5,81 6,18 5,93 5,81 6,17 5,9 5,95 5,71 5,95 5,81 6,28 6,28 6,25 6,3	21 969 21 881 20 290 20 290 20 290 20 794 17 450 17 450 17 450 17 200 16 320 18 194 18 194 17 967 16 637 16 637 16 637 18 311 17 042 14 496 14 216 13 344 13 344 13 326 13 326 14 770 14 816 14 816 14 816 14 766	$\begin{array}{c} 1,6\\ 1,25\\ 0,95\\ 1,5\\ 2,24\\ 1,9\\ 0,85\\ 1\\ 0,75\\ 0,9\\ 1,5\\ 1,5\\ 1,7\\ 1,5\\ 1,8\\ 1,32\\ 1,6\\ 3\\ 2,5\\ 0,9\\ 1,12\\ 1\\ 1,18\\ 0,85\\ 0,9\\ 1,06\\ 1,9\\ 2,24\\ 1,7\\ 2\\ 2\end{array}$	MR IV 161 - 112 MC 4 MR IV 160 - 132 S 4 MR IV 161 - 132 S 4 MR IV 161 - 132 MB 6 MR V 161 - 132 MB 6 MR V 160 - 132 MB 6 MR V 160 - 132 MB 6 MR V 160 - 132 MB 6 MR V 200 - 132 MB 6 MR IV 125 - 112 MC 4 MR IV 125 - 132 MB 6 MR IV 125 - 132 S 4 MR IV 126 - 132 MB 6 MR IV 126 - 132 MB 6 MR IV 160 - 132 S 4 MR IV 160 - 132 MB 6 MR IV 160 - 132 MB 6 MR IV 160 - 132 MB 6 MR V 160 - 132 MB 6 MR V 160 - 132 MB 6 MR V 125 - 112 MC 4 MR V 125 - 112 MC 4 MR IV 125 - 112 MC 4 MR IV 125 - 132 S 4 MR IV 125 - 132 MB 6 MR IV 126 - 112 MC 4 MR IV 126 - 132 S 4 MR IV 126 - 132 MB 6 <td>3,17 x 2 2,56 x 2 2,56 x 2</td>	3,17 x 2 2,56 x 2 2,56 x 2
7,5	170 243 243 4,59 5,79	4,86 4,91 4,91 5,24 5,46	1 802 1 273 1 273 71 943 59 462	1,0 2,8 1,9 2,24 1,4 1,9	MR MR	V 100 -112 M 4 V 80 -112 M 4 V 81 -112 M 4 IV 250 -132 MB 6 IV 250 -132 MB 6	10 7 3,8 × 63 3,8 × 50		26,9 27 27 27 27 27 27,5 27,5	6,3 5,82 5,82 5,82 5,82 5,82 5,82 5,82 5,96 5,96	14 766 13 589 13 589 13 589 13 589 13 589 13 661 13 661	2,36 1,25 1,5 1,25 1,5 1,5 1,7 2	MR V 161 - 132 MB 6 MR V 160 - 112 MC 4 MR V 161 - 112 MC 4	2,56 x 1 63
6,26 6,26	8,5 8,61	5,3 5,49 5,61 5,37 5,37 5,52	49 547 48 921 48 731 48 838 39 825 39 322 40 968 40 450 40 092 32 945 32 945 32 945 32 241 33 731 33 121 33 305 32 793	0,95 1,12 0,8 1,18 1,7 1,32 1,8	MR MR MR MR MR MR MR MR MR MR MR	IV 200 -112 MC 4 IV 200 -132 MB 6 IV 250 -132 MB 6 IV 250 -132 MB 6 IV 161 -112 MC 4 IV 161 -132 MB 6 IV 200 -112 MC 4 IV 200 -132 MB 6 IV 250 -132 S 4 IV 160 -112 MC 4 IV 161 -132 S 4 IV 161 -132 MB 6 IV 200 -132 MB 6 IV 200 -132 MB 6 IV 200 -132 MB 6 IV 200 -132 S 4	$\begin{array}{cccc} 4 & \times 50 \\ 2,56 & \times 50 \\ 3,8 & \times 50 \\ 4 & \times 40 \\ 2,56 & \times 63 \\ 2,56 & \times 40 \\ 4 & \times 40 \\ 2,56 & \times 63 \\ 2,56 & \times 40 \\ 3,8 & \times 40 \end{array}$	5,53	27 34 33,5 33,5 33,5 33,9 33,9 34 34 34 34 34 34,4 34,4 34,4	5,93 5,95 6,26 6,24 6,24 6,29 6,29 5,88 5,88 5,88 5,88 5,88 5,88 5,98 6,37 6,34 6,34	13 847 11 035 11 768 11 768 11 768 11 741 11 703 11 703 10 908 10 908 10 908 10 908 10 962 10 962 11 998 12 014 12 014	2,36 0,75 1,18 1,4 1,06 1,25 1,25 1,5 0,9 1,06 0,9 1,06 1,18 1,4 2,24 2,5	MR V 200 - 132 S 4 MR IV 100 - 112 MC 4 MR IV 125 - 112 MC 4 MR IV 125 - 132 MC 4 MR IV 126 - 132 S MR IV 126 - 132 S MR IV 125 - 132 MB 6 MR IV 125 - 132 MB 6 MR V 125 - 132 S MR V 125 - 132 S MR V 126 - 132 MB 6 MR V 126 - 132 MB 6 MR IV 160 - 132 MB 6 MR IV 160 - 132 S MR IV 160 - 132 S MR IV 160 - 132 S	63 2 x 2 2,54 x 2 2,54 x 2 2,03 x 2 2,03 x 2 2,03 x 1 50 50 50 50 50 50 32 3,17 x 1 2,56 x 2 2,56 x 2
5,85 5,59 5,59	13,4 13,4 13,3 13,5 13,5 13,5 13,5 13,4 16,8 16,9 16,9 16,7	5,67 5,61 5,61 5,72 5,72 5,75 5,87 5,92 5,61 5,7 5,7 5,7 5,7 5,83	26 698 26 698 26 568 26 568 26 818 26 818 27 241 27 500 27 873 21 087 21 207 21 207 21 969	1,12 1,18 1,4 1,9 2,24 3,55 0,8 0,75 0,9	MR MR MR MR MR MR MR	IV 160 -112 MC 4 IV 161 -112 MC 4 IV 161 -132 S 4 IV 161 -132 S 4 IV 160 -132 MB 6 IV 161 -132 MB 6 IV 200 -132 MB 6 IV 200 -132 MB 6 IV 200 -132 S 4 IV 126 -112 MC 4 IV 125 -132 MB 6 IV 126 -132 MB 6 IV 126 -132 MB 6 IV 160 -112 MC 4	$\begin{array}{c} 3,17 \times 40 \\ 3,17 \times 40 \\ 2,56 \times 50 \\ 2,56 \times 32 \\ 2,56 \times 32 \\ 2,56 \times 32 \\ 2,56 \times 32 \\ 3,17 \times 40 \\ 2,54 \times 40 \\ 2,03 \times 32 \\ 2,03 \times 32 \\ 3,17 \times 32 \end{array}$		34 34 34 34,4 34,4 42,5 42,5 44 41,9 41,9 41,9	5,99 5,99 5,99 5,99 6,1 6,1 6,26 5,95 6,04 6,35 6,35 6,32 6,32	$\begin{array}{c} 11 \ 098 \\ 11 \ 098 \\ 11 \ 098 \\ 11 \ 098 \\ 11 \ 098 \\ 11 \ 190 \\ 9 \ 289 \\ 8 \ 826 \\ 8 \ 653 \\ 9 \ 556 \\ 9 \ 556 \\ 9 \ 556 \\ 9 \ 520 \\ 9 \ 520 \end{array}$	1,6 2 1,6 2,12 2,5 0,8 0,71 0,95 1,4 1,7 1,32 1,6	MR V 160 - 112 MC 4 MR V 161 - 112 MC 4 MR V 160 - 132 S 4 MR V 161 - 132 S 4 MR V 161 - 132 S 4 MR V 161 - 132 MB 6 6 MR V 160 - 132 MB 6 6 MR V 100 - 112 MC 4 7 MR V 100 - 112 MC 4 7 MR V 100 - 132 MB 6 7 MR V 100 - 112 MC 4 7 MR V 100 - 112 MC 4 7 MR V 100 - 132 MB 6 7 MR IV 125 - 112 MC 4 7	50 50 50 32 32 2 x 2 40 25 2,54 x 2,54 x



hp	n ₂	P_2	M_2	fs	Gear reducer - motor	i		P ₁	n ₂	P_2	<i>M</i> ₂	fs	Gea	ar reducer - motor	i
1)	rpm	hp	lb in		2)			hp 1)	rpm	hp	lb in			2)	
7,5	42,5 42,5 42,5 42,5 44, 44 41,6 41,6 42,5 42,5 53,1 53,1	5,99 5,99 5,99 5,99 6,31 6,43 6,43 6,43 6,43 6,411 6,43 6,411 6,34 6,34	8 884 8 884 8 884 9 042 9 042 9 746 9 746 9 057 9 057 7 520 7 174	1,12 1,32 1,12 1,32 1,32 1,5 2,65 2,15 2,5 1 0,9	MR V 125 - 112 MC 4 MR V 126 - 112 MC 4 MR V 125 - 132 S MR V 125 - 132 S MR V 126 - 132 S MR V 126 - 132 ME MR V 126 - 132 ME MR V 126 - 132 ME MR V 160 - 132 S MR V 160 - 132 S MR V 161 - 132 S MR V 161 - 132 S MR V 100 - 112 MC MR V 100 - 112 MC	40 40 25 25 2,56 × 16 2,56 × 16 2,56 × 16 40 40 2 × 16		10 7,6 7,6 8,01	13,5 13,5 13,8 13,3 13,5 13,4 16,6 16,6 17,5 17,5 16,6 17,5	7,8 7,8 7,73 7,84 8 8,07 7,87 7,87 7,66 7,66 8,03 7,86	36 569 36 569 35 455 37 147 37 500 38 008 29 838 29 838 27 669 27 669 30 449 28 356	0,85 1 1,4 1,6 2,65 0,9 1,06 0,85 0,85 1,7 1,4	MR MR MR MR MR MR MR MR MR MR MR MR	IV 160 -132 MC 6 IV 161 -132 MC 6 IV 161 -160 M 6 IV 200 -132 M 4 IV 200 -132 M 6 IV 250 -132 M 4 IV 160 -132 M 4 IV 161 -132 M 4 V 161 -132 M 6 V 161 -160 M 6 IV 200 -132 M 4 V 200 -132 M 6	2,56 × 33 2,56 × 34 2,56 × 55 2,56 × 33 3,17 × 44 2,56 × 44 2,56 × 44 63 63 2,56 × 44 63
3,71	53,1 52,3 52,3 53,1 53,1 53,1 53,1 53,1 53,1 68	6,05 6,42 6,42 6,14 6,14 6,14 6,14 6,22 6,22 6,08	7 174 7 727 7 727 7 282 7 282 7 282 7 282 7 282 7 282 7 374 7 374 5 640	0,9 1,6 1,9 1,5 1,7 1,5 1,7 2,65 3,15 0,71	MR V 100 - 132 S 4 MR IV 125 - 132 S 4 MR IV 126 - 132 S 4 MR V 125 - 112 MC 4 4 MR V 125 - 112 MC 4 4 MR V 126 - 132 S 4 MR V 160 - 132 S 4 MR V 161 - 132 S 4 MR V 81 - 112 MC 4 4	 2,03 x 16 2,03 x 16 32 		6,56	17,5 16,7 17,5 21 20,8 20,8 22 22 22 22 22	7,86 8,49 8,04 7,91 8,08 8,08 7,92 7,92 7,92 7,92 7,92	28 356 31 979 29 028 23 795 24 500 24 500 22 686 22 686 22 686 22 686	1,4 2,65 2,5 0,75 1,12 1,32 0,95 1,12 0,95 1,12	MR MR MR MR MR MR MR MR MR	V 200 -160 M 6 IV 250 -132 M 4 V 250 -160 M 6 IV 126 -132 M 4 IV 160 -132 M 4 IV 161 -132 M 4 V 160 -132 MC 6 V 161 -132 MC 6 V 161 -132 MC 6 V 161 -160 M 6	63 3,17 x 32 63 2,54 x 32 2,56 x 32 50 50 50 50 50
0,11	68 68 68 68 68 68 68,8 68,8 68,8 68,8 6	6,19 6,19 6,42 6,42 6,42 6,42 6,42 6,42 6,42 6,46 6,46	5 737 5 737 5 953 5 953 5 953 5 953 5 953 5 925 5 925 6 012 6 012	1,18 1,18 1,7 2 1,7 2 1,7 2,24 3	MR V 100 -112 MC MR V 100 -132 S 4 MR V 125 -112 MC 4 MR V 125 -112 MC 4 MR V 126 -112 MC 4 MR V 126 -132 S 4 MR V 125 -132 MB 6 MR V 126 -132 MB 6 MR V 126 -132 MB 6 MR V 126 -132 MB 6 MR V 160 -132 S 4	25 25 25 25 25 25 25 25 16 16 25	•	7,78 7,84 8,09	20,8 22 22 26,2 27,1 27,5 26,8 26,6	8,24 8,11 8,26 8,05 8,43 7,93 8,56 8,53	24 969 23 240 23 240 23 662 19 385 19 607 18 172 20 141 20 203	2,12 1,9 1,9 3,35 0,85 0,9 0,8 1,4 1,25	MR MR MR MR MR MR MR MR	IV 200 -132 M 4 V 200 -132 MC 6 V 200 -160 M 6 V 250 -160 M 6 IV 126 -132 M 4 IV 126 -132 MC 6 V 126 -132 MC 6 IV 160 -132 M *4 IV 160 -132 M 4	2,56 x 32 50 50 2,03 x 32 2,03 x 20 40 3,17 x 20 2,56 x 25
4,73	85 85 85 84,6 85 85 85	6,36 6,45 6,45 6,49 6,49 6,49 6,49	4 718 4 783 4 783 4 831 4 810 4 810 4 810	0,75 1,25 1,25 1,4 2 2,36	MR V 81 - 112 MC 4 MR V 100 - 112 MC 4 MR V 100 - 132 S 4 MR V 100 - 132 ME 4 MR V 100 - 132 ME 4 MR V 125 - 112 MC 4 MR V 125 - 132 S 4 MR V 126 - 132 S 4	20 20 20 13 20 20 20 20 20 20			26,8 26,6 26,9 26,9 27 27 27,5 27,5	8,56 8,53 8,59 7,93 7,93 8,13 8,13	20 141 20 203 20 135 18 531 18 531 18 629 18 629	1,6 1,5 1,5 1,7 0,9 1,06 1,25 1,5	MR MR MR MR MR MR MR	IV 161 -132 M *4 IV 161 -132 M 4 IV 160 -132 MC 6 IV 161 -132 MC 6 V 160 -132 M 4 V 161 -132 M 4 V 160 -132 M 6 V 160 -132 MC 6	3,17 × 20 2,56 × 25 2,56 × 10 2,56 × 10 63 63 40 40
1 1 5,58	106 106 106 131	6,44 6,5 6,5 6,56 6,52	3 823 3 858 3 858 3 891 3 140	0,95 1,5 1,5 2,36 1,06	MR V 81 - 112 MC 4 MR V 100 - 112 MC 4 MR V 100 - 132 S 4 MR V 125 - 132 S 4 MR V 125 - 132 S 4 MR V 81 - 112 MC 4	16 16 16 13			27,5 27,5 26,6 27 27,5 27,5	8,13 8,13 8,65 8,08 8,25 8,25	18 629 18 629 20 489 18 882 18 916 18 916	1,25 1,5 2,5 1,7 2,36 2,36	MR MR MR MR MR	V 160 - 160 M 6 V 161 - 160 M 6 IV 200 - 132 M 4 V 200 - 132 M 4 V 200 - 132 MC 6 V 200 - 160 M 6	40 40 2,56 x 24 63 40 40
1 1 1 1	131 131 131 170 170 170	6,58 6,58 6,66 6,65 6,68 6,68	3 170 3 170 3 210 2 464 2 478 2 478	1,32 2	MR V 100 - 112 MC 4 MR V 100 - 132 S 4 MR V 125 - 132 S 4 MR V 81 - 112 MC 4 MR V 100 - 112 MC 4 MR V 100 - 132 S 4	13 13 10 10			33,5 33,5 33,5 33,5 33,9 34	8,53 8,51 8,53 8,51 8,51 8,57 8,02	16 048 16 010 16 048 16 010 15 959 14 875	1	MR MR MR MR MR	IV 125 - 132 M * 4 IV 125 - 132 M 4 IV 126 - 132 M 4 IV 126 - 132 M * 4 IV 126 - 132 M 4 IV 126 - 132 M 6 V 126 - 132 M 4	2,54 x 20 2,03 x 29 2,54 x 20 2,03 x 29 2,03 x 10 50
2	243	6,75	1 751	1,6	MR V 81-112 MC 4	I 7			34,4 34,4	8,15	14 948 14 948	0,85	MR	V 125 - 132 MC 6 V 126 - 132 MC 6	32
10	4,59 5,79 5,5 7,1	7,15 7,45 7,32 7,49	98 103 81 084 83 816 66 452	1,4	MR IV 250 - 132 MC 6 MR IV 250 - 132 MC 6 MR IV 250 - 160 M 6 MR IV 250 - 132 M 4	3,8 x 50 3,17 x 63 3,8 x 63			34,4 33,3 33,3 34 34 34 34,4	8,15 8,64 8,64 8,16 8,16 8,32	14 948 16 382 16 382 15 134 15 134 15 259	1 1,6 1,9 1,18 1,4 1,5	MR MR MR MR MR MR	V 126 - 132 MC 6 IV 160 - 132 M 4 IV 161 - 132 M 4 V 160 - 132 M 4 V 161 - 132 M 4 V 160 - 132 M 6	32 2,56 x 2(2,56 x 2(50 50 32
	7,24 6,93 8,61 8,61 8,95 8,66	7,65 7,6 7,53 7,53 7,76 7,8	66 598 69 119 55 160 55 160 54 671 56 740	1,06	MR IV 250 - 132 MC 6 MR IV 250 - 160 M 6 MR IV 200 - 132 MC 6 MR IV 200 - 132 MC 6 MR IV 200 - 160 M 6 MR IV 250 - 132 M 6 MR IV 250 - 132 M 6 MR IV 250 - 132 M 6	3,17 x 50 2,56 x 50 2,56 x 50 3,8 x 50			34,4 34,4 34,4 33,3 34	8,32 8,32 8,32 8,76 8,29	15 259 15 259 15 259 16 594 15 361	1,8 1,5 1,8 3,15 2,24	MR MR MR MR MR	V 161 -132 MC 6 V 160 -160 M 6 V 161 -160 M 6 IV 200 -132 M 4 V 200 -132 M 4	32 32 32 2,56 x 20 50
6,89 8,49	10,8 10,6 10,8 10,8 10,8 11,2	7,57 7,57 7,75 7,75 7,93 7,65	44 358 45 165 45 416 45 416 44 718 36 229	1 1,32 1,32	MR IV 161 - 132 MC 6 MR IV 200 - 132 M 4 MR IV 200 - 132 MC 6 MR IV 200 - 132 MC 6 MR IV 200 - 160 M 6 MR IV 250 - 132 M 4	2,56 x 40 2,56 x 63 2,56 x 40			41,9 41,9 42,5 42,5 42,5 44 44	8,66 8,62 8,62 8,17 8,17 8,61 8,61	13 031 12 982 12 982 12 115 12 115 12 330 12 330	1 0,95	MR MR MR MR MR MR	IV 125 -132 M * 4 IV 125 -132 M 4 IV 126 -132 M 4 V 125 -132 M 4 V 126 -132 M 4 V 126 -132 M 4 V 125 -132 M 6	2,54 x 1 2,03 x 2 2,03 x 2 40 40 25 25

1) Powers valid for continuous duty S1; **increase** possible for S2 ... S10 (see ch. 2b) in which case P_2 , M_2 increase and fs decreases proportionately. 2) For complete designation when ordering see ch. 3. * Mounting postion **B5R** (see table ch.2b)



P ₁ hp	n ₂ rpm	P ₂ hp	M ₂ Ib in	fs	Gea	ır reducer - motor	i	P ₁ hp	n ₂ rpm	P ₂ hp	M ₂ Ib in	fs	Gear	r reducer - motor	i
1)						2)		1)						2)	
10	41,6 41,6 42,5 42,5 42,5	8,77 8,77 8,33 8,33 8,41	13 290 13 290 12 350 12 350 12 478	1,6 1,9	MR MR MR MR MR	IV 160 - 132 M 4 IV 161 - 132 M 4 V 160 - 132 M 4 V 161 - 132 M 4 V 200 - 132 M 4	2,56 x 16 2,56 x 16 40 40 40	12,5	42,5 41,6 42,5 52,3 52,3	10,2 11 10,3 10,7	15 150 16 631 15 306 12 925 12 925	1,5 2,8 2,24 0,95 1,12	MR MR MR MR	V 161 -132 MB 4 IV 200 -132 MB 4 V 200 -132 MB 4 IV 125 -132 MB 4	40 2,56 x 16 40 2,03 x 16
	52,3 52,3 53,1 53,1 55	8,75 8,75 8,37 8,37 8,37 8,7	10 537 10 537 9 930 9 930 9 972	1,18 1,4 1,06 1,25 1,4	MR MR MR MR MR	IV 125 - 132 M 4 IV 126 - 132 M 4 V 125 - 132 M 4 V 126 - 132 M 4 V 126 - 132 M 4 V 126 - 132 M 6	2,03 x 16 2,03 x 16 32 32 20		52,3 53,1 53,1 53,1 53,1 53,1	10,7 10,3 10,3 10,4 10,4 10,5	12 923 12 181 12 181 12 336 12 336 12 455	0,85 1,06 1,6 1,9 3	MR MR MR MR MR MR	IV 126 -132 MB 4 V 125 -132 MB 4 V 126 -132 MB 4 V 160 -132 MB 4 V 161 -132 MB 4 V 200 -132 MB 4	2,03 × 16 32 32 32 32 32 32 32
	53,1 53,1 68 68	8,48 8,48 8,44 8,76	10 056 10 056 7 824 8 118	1,9 2,36	MR MR MR MR	V 160 - 132 M 4 V 161 - 132 M 4 V 100 - 132 M 4 V 100 - 132 M 4 V 125 - 132 M 4	32 32 25 25		68 68 68 68	10,7 10,7 10,8 10,8	9 958 9 958 10 057 10 057	1 1,18 1,8 2,12	MR MR MR MR	V 125 -132 MB 4 V 126 -132 MB 4 V 160 -132 MB 4 V 161 -132 MB 4	25 25 25 25
	68 68,8 68,8 68 68	8,76 8,81 8,81 8,84 8,84	8 118 8 079 8 079 8 198 8 198		MR MR MR MR MR	V 126 -132 M 4 V 125 -132 MC 6 V 126 -132 MC 6 V 160 -132 M 4 V 161 -132 M 4	25 16 16 25 25		85 85 85 85 85	10,8 10,9 10,9 10,9 10,9	8 000 8 046 8 046 8 115 8 115	0,71 1,18 1,4 2,12 2,65	MR MR MR MR MR	V 100 - 132 MB 4 V 125 - 132 MB 4 V 126 - 132 MB 4 V 160 - 132 MB 4 V 161 - 132 MB 4	20 20 20 20 20 20
	85 85 85 84,6 84,6	8,8 8,85 8,85 8,98 8,98	6 522 6 559 6 559 6 687 6 687	1,7 2	MR MR MR MR MR	V 100 - 132 M 4 V 125 - 132 M 4 V 126 - 132 M 4 V 125 - 132 MC 6 V 126 - 132 MC 6 V 126 - 132 MC 6	20 20 20 13 13		106 106 106 106 106	10,9 11 11 11 11 11	6 454 6 508 6 508 6 552 6 552	0,9 1,4 1,7 2,65 3,15	MR MR MR MR MR	V 100 -132 MB 4 V 125 -132 MB 4 V 126 -132 MB 4 V 160 -132 MB 4 V 161 -132 MB 4	16 16 16 16 16
	85 85 106 106 106	8,92 8,92 8,87 8,94 8,94	6 616 6 616 5 262 5 305 5 305	3,15 1,12 1,8	MR MR MR MR MR	V 160 - 132 M 4 V 161 - 132 M 4 V 100 - 132 M 4 V 125 - 132 M 4 V 126 - 132 M 4	20 20 16 16 16		131 131 131 170 170	11 11,1 11,1 11,2 11,2	5 303 5 370 5 370 4 144 4 169	1,06 1,7 2 1,25	MR MR MR MR MR	V 100 - 132 MB 4 V 125 - 132 MB 4 V 126 - 132 MB 4 V 100 - 132 MB 4 V 100 - 132 MB 4 V 125 - 132 MB 4	13 13 13 10 10
	131 131 170 170	8,97 9,08 9,11 9,17	4 323 4 378 3 379 3 399	1,32 2,12 1,5	MR MR MR MR	V 100 - 132 M 4 V 125 - 132 M 4 V 100 - 132 M 4 V 105 - 132 M 4	13 13 10 10	15 12,2	170 5,5 7,1	11,2 10,7 11	4 169 122 929 97 463	1,9 2,36 0,75 0,95	MR MR MR	V 126 - 132 MB 4 IV 250 - 160 L 6 IV 250 - 132 MC 4	10 3,17 x 63 3,8 x 63
12,5	7,1 8,95 10,6	9,18 9,52 9,28	81 514 67 063 55 402	1,12 1,6 0,8	MR MR MR	IV 250 - 132 MB 4 IV 250 - 132 MB 4 IV 200 - 132 MB 4	3,8 × 63 3,8 × 50 2,56 × 63		8,95 8,5	11,1 11,4 11,2 11,4	101 375 80 184 83 057 83 219	1,06 1,32 1,06 1,32	MR MR	IV 250 - 160 L 6 IV 250 - 132 MC 4 IV 250 - 160 M 4 IV 250 - 160 L 6	3,17 x 50 3,8 x 50 3,17 x 63 3,17 x 40
	11,2 13,3 13,4	9,73 9,62 9,9	54 854 45 566 46 623	1,9 1,12 2,12	MR MR MR	IV 250 - 132 MB 4 IV 200 - 132 MB 4 IV 250 - 132 MB 4	3,8 × 40 2,56 × 50 3,17 × 40	10,8	10,8 11,2 10,7 10,8	11,4 11,6 11,6 11,6	66 610 65 586 68 154 68 167		MR MR MR	IV 200 - 160 L 6 IV 250 - 132 MC 4 IV 250 - 160 M 4 IV 250 - 160 L 6	2,56 x 40 3,8 x 40 3,17 x 50 2,56 x 40
9,37 9,37	16,6 16,6 16,7	9,66 9,66 9,85 10,4	36 601 36 601 37 351 39 228	· ·	MR MR MR MR	IV 160 - 132 MB 4 IV 161 - 132 MB 4 IV 200 - 132 MB 4 IV 250 - 132 MB 4	· ·		13,3 13,3 13,4 13,4	11,5 11,5 11,8 11,8	54 482 54 482 55 745 55 745	0,95 0,95 1,8 1,8		IV 200 - 132 MC 4 IV 200 - 160 M 4 IV 250 - 132 MC 4 IV 250 - 160 M 4	
10,4 10,4	20,8 20,8 20,8 21,4 26,6 26,6	9,91 9,91 10,1 10,6 10,5 10,5	30 054 30 054 30 629 31 328 24 783 24 783	1,12 1,8 3,15 1	MR MR MR MR MR MR	IV 160 - 132 MB 4 IV 161 - 132 MB 4 IV 200 - 132 MB 4 IV 250 - 132 MB 4 IV 160 - 132 MB 4 IV 161 - 132 MB 4	2,56 x 32 2,56 x 32	9,37 8,85		11,5 11,7 11,8 11,8 11,8 11,9 11,5	43 762 42 788 44 658 44 658 43 701 41 589	0,75 0,85 1,12 1,12 1,32 0,95	MR MR MR	IV 161 - 132 MC 4 IV 161 - 160 L 6 IV 200 - 132 MC 4 IV 200 - 160 M 4 IV 200 - 160 L 6 V 200 - 160 L 6	2,56 x 40 2 x 32 2,56 x 40 2,56 x 40 2 x 32 63
	27 27 26,6 27	9,73 9,73 10,6 9,92	22 731 22 731 25 133 23 162	0,75 0,9 2	MR MR MR MR	V 160 - 132 MB 4 V 161 - 132 MB 4 IV 200 - 132 MB 4 V 200 - 132 MB 4	63 63 2,56 x 25 63		16,7 16,6 17,2 17,5	12,5 12 12,6 11,8	46 902 45 474 46 161 42 575	1,9 2 2,24 1,7	MR MR	IV 250 - 132 MC 4 IV 250 - 160 M 4 IV 250 - 160 L 6 V 250 - 160 L 6	3,17 x 32 2,56 x 40 2,56 x 25 63
10,1	33,5 33,3 33,3 34 34 33,3 34 33,3	10,4 10,6 10,6 10 10 10,7 10,2	19 639 20 095 20 095 18 564 18 564 20 355 18 843	1,5 1 1,18 2,5	MR MR MR MR MR MR MR	IV 126 - 132 MB 4 IV 160 - 132 MB 4 IV 161 - 132 MB 4 V 160 - 132 MB 4 V 161 - 132 MB 4 IV 200 - 132 MB 4 V 200 - 132 MB 4	2,56 x 20 50 50	10,4 10,4 11,1 11,1 11,7	20,8 20,8 21,3 21,3 22 20,8 21,3	11,9 11,9 11,7 11,7 11,6 12,1 11,9	35 934 35 934 34 833 34 833 33 273 36 622 35 420	0,75 0,9 0,71 0,85 0,8 1,5 1,32	MR MR MR MR MR	IV 160 - 132 MC 4 IV 161 - 132 MC 4 IV 160 - 160 M 4 IV 161 - 160 M 4 V 161 - 160 L 6 IV 200 - 132 MC 4 IV 200 - 160 M 4	2,56 x 32 2,56 x 32 2 x 40 2 x 40 50 2,56 x 32 2,56 x 32 2 x 40
	41,9 41,9 42,5 41,6 41,6	10,6 10,6 10 10,8 10,8	15 925 15 925 14 861 16 303 16 303	0,8 0,95 0,8 1,6 1,9	MR MR MR MR MR	IV 125 - 132 MB 4 IV 126 - 132 MB 4 V 126 - 132 MB 4 IV 160 - 132 MB 4 IV 160 - 132 MB 4 IV 161 - 132 MB 4	2,03 × 20 2,03 × 20 40 2,56 × 16 2,56 × 16		22 21,4 20,8 22 26,6	11,9 12,7 12,6 12,1 12,5	34 085 37 458 38 213 34 704 29 631	1,32 2,65 2,12 2,24 0,85	MR MR MR MR MR	V 200 -160 L 6 IV 250 -132 MC 4 IV 250 -160 M 4 V 250 -160 L 6 IV 160 -132 MC 4	50 3,17 x 25 2,56 x 32 50 2,56 x 25
	42,5	10,2	15 150		MR	V 160 - 132 MB 4	40		26,6	12,5	29 631	1		IV 161 - 132 MC 4	2,56 x 2

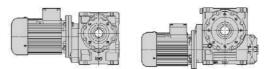
1) Powers valid for continuous duty S1; **increase** possible for S2 ... S10 (see ch. 2b) in which case P_2 , M_2 increase and fs decreases proportionately. 2) For complete designation when ordering see ch. 3.

3,17 x 63 2,56 x 50

3,17 x 50 3,17 x 40

2,56 x 40 2 x 32 2,56 x 40 2,56 x 25

2,56 x 32 2,56 x 20


2

2 2

P ₁ hp	n ₂ rpm	P ₂ hp	M ₂ Ib in	fs	Gea	ar reducer - motor	i			P ₁ hp	n ₂ rpm	P ₂ hp	M ₂ Ib in	fs	Gea	ar reducer - motor	T
1)						2)				1)						2)	
15 12,2 12,2 12,4 12,4	2 26,6 27,5	12 12,6 12,6 11,6 11,9 11,9 12,7 12,3 11,9 12,1 12,8 12,1 12,7	28 514 28 514 28 768 28 768 27 178 27 322 30 051 29 097 27 693 27 693 27 743 30 420 28 167 24 027	0,95 1,12 0,75 0,75 0,85 1 1,7 1,7 1,18 1,18 1,6 3	MR MR MR MR MR MR MR MR MR MR MR MR MR M	IV 160 - 160 M 4 IV 161 - 160 M 4 IV 160 - 160 L 6 IV 161 - 160 L 6 V 161 - 132 MC 4 V 161 - 160 L 6 V 161 - 160 L 6 V 161 - 160 L 6 IV 200 - 132 MC 4 IV 200 - 132 MC 4 V 200 - 160 M 4 V 250 - 160 M 4 IV 250 - 160 M 4 IV 160 - 132 MC 4		•	15		85 85 85 85 106 106 106 106 131 131 131 131 131 131 170 170	13 13,1 13,1 13,1 13,1 13,1 13,2 13,2 13	9 620 9 703 9 703 9 703 9 703 7 781 7 781 7 834 7 834 6 420 6 420 6 422 6 462 6 462 4 985 4 985	1,18 1,8 2,12 1,8 2,12 1,18 1,4 2,24 2,65 1,4 1,7 2,65 3 1,6 1,9	MR MR MR MR MR MR MR MR MR MR MR MR MR M	V 126 - 132 MC 4 V 160 - 132 MC 4 V 161 - 132 MC 4 V 161 - 132 MC 4 V 160 - 160 M 4 V 125 - 132 MC 4 V 126 - 132 MC 4 V 126 - 132 MC 4 V 161 - 160 M 4 V 125 - 132 MC 4 V 126 - 132 MC 4 V 161 - 160 M 4 V 125 - 132 MC 4 V 161 - 160 M 4 V 125 - 132 MC 4 V 125 - 132 MC 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	33,3 34 34 34,4 34,4 34,4	12,7 12,7 12,7 12,7 12,7 12,7	24 027 23 456 23 456 23 368 23 368	1,25 1 1,18 1,18 1,4	MR MR MR MR MR	IV 161 - 132 MC 4 IV 160 - 160 M 4 IV 161 - 160 M 4 IV 161 - 160 L 6 IV 161 - 160 L 6	2,56 x 20 2 x 25 2 x 25 2 x 16 2 x 16 2 x 16		20	16,3 15,8	170 170 8,5 8,61	13,5 13,5 15,3 15,5	5 005 5 005 113 259 113 644	3 3,55 0,75 0,95	MR MR MR MR	V 160 - 160 M 4 V 161 - 160 M 4 IV 250 - 160 L 4 IV 250 - 180 L 6	4
	34 34 34 34 34,4 34,4 33,3	12 12 12 12,2 12,2 12,2 12,8	22 197 22 197 22 197 22 197 22 197 22 379 22 379 22 379 24 338	1 0,8 1 1,06 1,25 2,12	MR MR MR MR MR MR	V 160 - 132 MC 4 V 161 - 132 MC 4 V 160 - 160 M 4 V 161 - 160 M 4 V 160 - 160 L 6 V 161 - 160 L 6 IV 200 - 132 MC 4	50 50 50 32 32 2,56 × 20			14,7 13,9	10,7 13,4 16,6 17,2 16,6 17,2	15,8 16,1 16,1 16,3 16,4 17,2	92 937 76 017 60 898 59 593 62 009 62 946	1,06 1,32 0,85 0,95 1,5 1,7	MR MR MR MR MR	IV 250 -160 L 4 IV 250 -160 L 4 IV 200 -160 L 4 IV 200 -180 L 6 IV 250 -160 L 4 IV 250 -160 L 4 IV 250 -180 L 6	4 6 4 6
10,5	34 34 34,4 33,3 34 9 41,9	12,8 12,2 12,2 12,4 13 12,3 12,3	23 709 22 529 22 529 22 695 24 541 22 837 19 040	3,75 2,8	MR MR MR MR MR MR	IV 200 - 160 M 4 V 200 - 132 MC 4 V 200 - 160 M 4 V 200 - 160 L 6 IV 250 - 160 M 4 V 250 - 160 M 4 IV 126 - 132 MC 4	2 x 25 50 50 32 2,56 x 20 50 2,03 x 20			12.2	17,5 21,3 22 20,8 21,5 22 26,6	16,1 16,3 16,2 17,2 17,4 16,5	58 057 48 300 46 479 52 108 50 835 47 324	1,25 0,95 0,95 1,6 2,12 1,7	MR MR MR MR MR	V 250 - 180 L 6 IV 200 - 160 L 4 V 200 - 180 L 6 IV 250 - 160 L 4 IV 250 - 160 L 4 IV 250 - 180 L 6 V 250 - 180 L 6	4 6 4 6
	41,6 41,6 42,5 42,5 42,5 42,5 42,5 42,5 42,5	12,9 12,9 12,8 12,8 12,2 12,2 12,2 12,2 12,2	19 492 19 492 18 985 18 985 18 114 18 114 18 114 18 114 18 114	1,32 1,6 1,25 1,5 1,06 1,25 1,06	MR MR MR MR MR MR MR MR	IV 160 - 132 MC 4 IV 161 - 132 MC 4 IV 161 - 160 M 4 IV 161 - 160 M 4 V 160 - 132 MC 4 V 160 - 132 MC 4 V 161 - 132 MC 4 V 161 - 160 M 4	2,56 x 16 2,56 x 16 2 x 20 2 x 20	A		12,2	26,6 26,6 27,5 27 27,5 26,6 27 27,5	16,4 16,7 17,4 16,2 16,5 17,5 16,4 16,8	38 883 39 677 39 769 37 764 37 832 41 481 38 409 38 468	0,8 1,25 1,4 0,85 1,18 2,24 1,5 2	MR MR MR MR MR MR MR	IV 161 -160 L 4 IV 200 -160 L 4 IV 200 -180 L 6 V 200 -180 L 6 IV 200 -180 L 6 IV 250 -160 L 4 V 250 -160 L 4 V 250 -160 L 4	4 6 4 4 6
11,9		13,1 12,9 12,3 12,3 12,3	19 885 19 203 18 301 18 301 15 454	2,5 1,9 1,9 0,95	MR MR MR MR MR	IV 200 - 132 MC 4 IV 200 - 160 M 4 V 200 - 132 MC 4 V 200 - 160 M 4 IV 126 - 132 MC 4	2 x 20 40 40 2,03 x 16			15,9 14,4 14,4	34 34,4 34,4 34,4 34 34	17,3 16,3 16,6 16,6 17,4 16,6	31 986 30 268 30 517 30 517 32 330 30 721	0,85 0,71 0,75 0,9 1,4 1,12	MR MR MR MR MR	V 160 - 180 L 6	4 6 4
	53,1 53,1 53,1 53,1 53,1 53,1 53,1	12,3 12,3 13 13 12,4 12,4	14 565 14 565 15 375 15 375 14 749 14 749	0,85 1,5 1,8	MR MR MR MR MR MR	V 125 - 132 MC 4 V 126 - 132 MC 4 IV 160 - 160 M 4 IV 161 - 160 M 4 V 160 - 132 MC 4 V 161 - 132 MC 4	32 32 2 x 16 2 x 16 32 32 32			17,1 17,1	34,4 33,3 34 42,5 42,5	16,9 17,7 16,8 17,5 17,5	30 948 33 465 31 142 25 889 25 889	1,5 2,65 2 0,9 1,06	MR MR MR MR MR	V 200 - 180 L 6 IV 250 - 160 L 4 V 250 - 160 L 4 IV 160 - 160 L 4 IV 160 - 160 L 4 IV 161 - 160 L 4	4 4 4
	53,1 53,1 55 55 53,1 53,1	12,4 12,4 12,9 12,9 13,2 12,6	14 749 14 749 14 794 14 794 15 652 14 892	1,32 1,6 1,5 1,7 2,8 2,5	MR MR MR MR MR MR	V 160 - 160 M 4 V 161 - 160 M 4 V 160 - 160 L 6 V 161 - 160 L 6 IV 200 - 160 M 4 V 200 - 160 M 4	32 32 20 20 2 x 16 32			9 - 2 -	42,5 42,5 42,5 42,5 42,5 44 41,6 42,5	16,7 16,7 17,7 16,8 17,6 18 17	24 701 24 701 26 186 24 956 25 212 27 341 25 189	0,8 0,95 1,8 1,4 1,7 3,15 2,5	MR MR MR MR MR MR	V 160 - 160 L 4 V 161 - 160 L 4 IV 200 - 160 L 4 V 200 - 160 L 4 V 200 - 160 L 4 V 200 - 180 L 6 IV 250 - 160 L 4 V 250 - 160 L 4	4 4 4 6 4
	68 68 68 68 68 68 68 68,8 68,8	12,8 12,8 13 13 13 13 13,1 13,1	11 906 11 906 12 024 12 024 12 024 12 024 12 024 11 984 11 984	1 1,5 1,8 1,5 1,8 1,8	MR MR MR MR MR MR MR	V 125 - 132 MC 4 V 126 - 132 MC 4 V 160 - 132 MC 4 V 161 - 132 MC 4 V 160 - 160 M 4 V 161 - 160 M 4 V 161 - 160 L 6 V 161 - 160 L 6	25 25 25 25 25 25 25 16 16				53,1 53,1 53,1 53,1 53,1 53,1 53,1 53,1	17,7 17,7 17 17 17 18 17,1 17,8	20 965 20 965 20 112 20 112 21 344 20 307 20 383	1,12 1,32 0,95 1,18 2 1,8 2,12	MR MR MR MR MR MR MR	V 250 -160 L 4 IV 160 -160 L 4 V 161 -160 L 4 V 160 -160 L 4 V 161 -160 L 4 IV 200 -160 L 4 V 200 -160 L 4 V 200 -180 L 6	4 4 4 4 4
	68 85	13,1 13	12 114 9 620	2,8	MR MR	V 200 - 160 M 4 V 125 - 132 MC 4	25 20				53,1 68	17,7 17,5	21 012 16 235	2,65 0,71	MR MR	V 250 - 160 L 4 V 126 - 160 L * 4	4

1) Powers valid for continuous duty S1; **increase** possible for S2 ... S10 (see ch. 2b) in which case P_2 , M_2 increase and fs decreases proportionately. 2) For complete designation when ordering see ch. 3. * Mounting postion **B5R** (see table ch.2b)

i

20 20

16

13 13

2,56 x 40

2,56 x 50

2,56 x 40 2,56 x 32 2 x 25 50

x 32 40

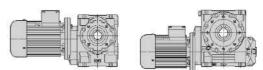
25

16 16

13 13

10

2,56 x 40


2,56 x 25 2 x 32

x 40

P ₁ hp	n ₂	P ₂ hp	M ₂ Ib in	fs	Gea	r reducer - motor	i	P ₁ hp	n ₂ rpm	P ₂ hp	M ₂ Ib in	fs	Gea	r reducer - motor
1)						2)		1)						2)
20	68 68,8 68,8 68,8 68 68	17,7 17,7 17,8 17,8 17,8 17,8 18,1	16 397 16 397 16 342 16 342 16 519 16 600	1,12 1,32 1,32 1,6 2 2,36	MR MR MR MR MR MR	V 160 -160 L 4 V 161 -160 L 4 V 160 -180 L 6 V 161 -180 L 6 V 200 -160 L 4 V 200 -180 L 6	25 25 16 16 25 16	25	85 85 106 106 106	22 22,1 22,2 22,2 22,2 22,5	16 319 16 319 16 416 13 176 13 176 13 364	1,06 1,32 2,12 1,32 1,6 2,36	MR MR MR MR MR	V 160 - 180 M 4 V 161 - 180 M 4 V 200 - 180 M 4 V 160 - 180 M 4 V 161 - 180 M 4 V 200 - 180 M 4
	85 85 85 84,6 84,6 85	17,7 17,7 17,8 17,8 18,1 18,1 18,1 18	13 118 13 118 13 232 13 232 13 509 13 509 13 311	0,71 0,85 1,32 1,6 1,5 1,8 2,65	MR MR MR MR MR MR MR	V 125 -160 L * 4 V 126 -160 L * 4 V 160 -160 L 4 V 161 -160 L 4 V 160 -180 L 6 V 161 -180 L 6 V 200 -160 L 4	20 20 20 13 13 20		131 131 131 131 170 170	22,5 22,5 22,6 22,7 22,7	10 869 10 869 10 905 8 417 8 417	1,5 1,8	MR MR MR MR MR	V 160 - 180 M 4 V 161 - 180 M 4 V 200 - 180 M 4 V 160 - 180 M 4 V 161 - 180 M 4
	106 106 106 106 106	17,9 17,9 18 18 18,3	10 610 10 610 10 683 10 683 10 836	0,9 1,06 1,6 1,9	MR MR MR MR MR	V 125 -160 L 4 V 125 -160 L 4 V 126 -160 L 4 V 160 -160 L 4 V 161 -160 L 4 V 200 -160 L 4	16 16 16 16 16	30 17,1 21,5 23,2	13,3	23,3 23,6 24 23,6 25,2	136 333 111 598 90 947 85 150 76 425	0,85 1	MR MR MR MR MR	IV 250 -200 L 6 IV 250 -180 L 4 IV 250 -180 L 4 V 250 -200 L 6 IV 250 -180 L 4
	131 131 131 131 131 170 170	18,2 18,2 18,3 18,3 18,3 18,3 18,3	8 755 8 755 8 812 8 812 6 797 6 797	1,06 1,25 1,9 2,24 1,18 1,4	MR MR MR MR MR MR	V 125 -160 L * 4 V 126 -160 L * 4 V 160 -160 L 4 V 161 -160 L 4 V 125 -160 L * 4 V 125 -160 L * 4	13 13 13 13 10 10	19,4 20,1	22 22 26,6 27,5 26,6 27,5	25,5 24,2 24,5 24,2 25,7 25,7	72 957 69 408 58 193 55 487 60 839 58 930	1,32 1,12 0,85 0,8 1,5 1,7	MR MR MR MR MR MR	IV 250 - 200 L V 250 - 200 L IV 200 - 180 L V 200 - 200 L IV 250 - 180 L IV 250 - 180 L IV 250 - 200 L IV 250 - 200 L
	170 170	18,4 18,4	6 824 6 824	2,12	MR MR	V 160 - 160 L 4 V 161 - 160 L 4	10 10		27 27,5	24,1 24,6	56 334 56 419	1,06 1,4	MR MR	V 250 - 180 L 4 V 250 - 200 L 6
25 17,1	10,8 13,3 16,6	19,6 19,8 20,2	114 644 93 844 76 478	0,9 1 1,18	MR MR MR	IV 250 - 200 LR 6 IV 250 - 180 M 4 IV 250 - 180 M 4	2,56 x 40 2,56 x 50 2,56 x 40	24,6 22,4	34	25,6 24,3 24,8 25,9	47 418 45 058 45 391 49 082	1 0,8 1 1,8	MR MR MR MR	IV 200 - 180 L 4 V 200 - 180 L 4 V 200 - 200 L 6 IV 250 - 180 L 4
17,2	17,5 21,3	19,8 20,1	71 603 59 571	1 0,8	MR MR	V 250 - 200 LR 6 IV 200 - 180 M 4	63 2 x 40		34 34,4	24,6 25,7	45 675 47 037	1,4 1,5	MR MR	V 250 - 180 L 4 V 250 - 200 L 6
18,6	22 20,8 22 22	20 21,2 21,4 20,4	57 324 64 267 61 350 58 366	0,75 1,25 1,6 1,32	MR MR MR MR	V 200 - 200 LR 6 IV 250 - 180 M 4 IV 250 - 200 LR 6 V 250 - 200 LR 6	50 2,56 × 32 2 × 25 50		42,5 42,5 44 41,6	25,9 24,7 25,8 26,5	38 406 36 602 36 977 40 100	1,25 0,95 1,12 2,12	MR MR MR MR	IV 200 - 180 L 4 V 200 - 180 L 4 V 200 - 200 L 6 IV 250 - 180 L 4
19,4 20,1	26,6 27,5 26,6 27,5 27 27,5	20,6 20,4 21,6 21,6 20,3 20,7	48 935 46 659 51 160 49 555 47 371 47 444	1 0,95 1,8 2 1,25 1,6	MR MR MR MR MR	IV 200 - 180 M 4 V 200 - 200 LR 6 IV 250 - 180 M 4 IV 250 - 200 LR 6 V 250 - 180 M 4 V 250 - 200 LR 6	2 x 32 40 2,56 x 25 2 x 20 63 40	20,5	42,5 44 53,1 53,1 53,1 53,1 55	24,9 26,1 24,9 26,4 25,1 26,1	36 944 37 365 29 498 31 304 29 783 29 895	1,4 1,18 1,4	MR MR MR MR MR MR	V 250 -180 L 4 V 250 -200 L 6 V 161 -180 L 4 IV 200 -180 L 4 V 200 -180 L 4 V 200 -200 L 6
	34 34 34,4 33,3 34	21,5 20,4 20,8 21,8 20,7	39 874 37 890 38 170 41 274 38 408	1,18 2,24	MR MR MR MR MR	IV 200 - 180 M 4 V 200 - 180 M 4 V 200 - 200 LR 6 IV 250 - 180 M 4 V 250 - 180 M 4	2 x 25 50 32 2,56 x 20 50		53,1 55 68 68 68 68	26 26,3 25,9 25,9 26,1	30 818 30 107 24 048 24 048 24 227	0,75	MR MR MR MR MR	V 250 - 180 L 4 V 250 - 200 L 6 V 160 - 180 L 4 V 161 - 180 L 4 V 200 - 180 L 4
17,1 17,1 18,7	42,5 42,5 42,5 42,5 42,5 42,5 44 41,6	21,5 21,5 20,5 21,8 20,8 21,7 22,2	31 929 31 929 30 464 32 296 30 779 31 094 33 720	0,75 0,9 0,75 1,5 1,12 1,4 2,5	MR MR MR MR MR MR MR	IV 160 -180 M 4 IV 161 -180 M 4 V 161 -180 M 4 IV 200 -180 M 4 V 200 -180 M 4 V 200 -200 LR 6 IV 250 -180 M 4 V 250 -180 M 4	2 x 20 2 x 20 40 2 x 20 40 25 2,56 x 16		68,8 68 85 85 85 85 84,6 85	26,6 26,3 26,2 26,2 26,3 26,7 26,4	24 346 24 390 19 406 19 406 19 522 19 911 19 610	0,9 1,06 1,8 1,9	MR MR MR MR MR MR	V 200 - 200 L 6 V 250 - 180 L 4 V 160 - 180 L 4 V 161 - 180 L 4 V 200 - 180 L 4 V 200 - 180 L 4 V 200 - 200 L 6 V 250 - 180 L 4
18,6 18,6 20,5 20,5	42,5 53,1 53,1 53,1 53,1 53,1 53,1 53,1	20,9 21,8 21,8 20,9 20,9 22,2 21,1 21,9	31 066 25 857 25 857 24 805 24 805 26 324 25 045 25 139	0,9 1,06 0,8 0,95 1,7 1,4 1,7	MR MR MR MR MR MR MR	V 250 -180 M 4 IV 160 -180 M 4 IV 161 -180 M 4 V 160 -180 M 4 V 161 -180 M 4 V 161 -180 M 4 V 200 -180 M 4 V 200 -180 M 4 V 200 -200 LR 6	40 2 x 16 2 x 16 32 32 2 x 16 32 2 x 16 32 20		106 106 106 131 131 131 131 170	26,4 26,4 26,8 26,8 26,8 26,9 27	15 668 15 668 15 893 12 925 12 925 12 968 10 009	1,32 1,5 2,36 1,5	MR MR MR MR MR MR	V 160 - 180 L 4 V 161 - 180 L 4 V 200 - 180 L 4 V 160 - 180 L 4 V 161 - 180 L 4 V 161 - 180 L 4 V 200 - 180 L 4 V 160 - 180 L 4 V 160 - 180 L 4
	53,1 68 68 68 68,8 68,8 68	21,8 21,8 21,8 22 22,3 22,1	25 915 20 222 20 222 20 373 20 473 20 510	0,9 1,06 1,6 1,9	MR MR MR MR MR MR	V 250 -180 M 4 V 160 -180 M 4 V 161 -180 M 4 V 200 -180 M 4 V 200 -200 LR 6 V 250 -180 M 4	32 25 25 16 25	40 23,2 27,3 33,5	21,3	27 32,7 33,2 35 34,7	10 009 124 019 98 348 82 963 82 278	0,85 1,12	MR MR MR MR MR	V 161 - 180 L 4 IV 250 - 200 L 4

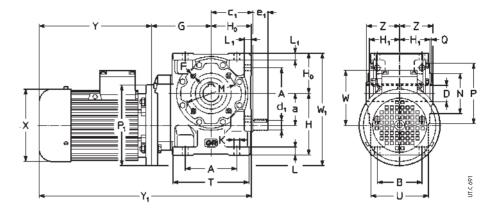
1) Powers valid for continuous duty S1; **increase** possible for S2 ... S10 (see ch. 2b) in which case P_2 , M_2 increase and fs decreases proportionately. 2) For complete designation when ordering see ch. 3. * Mounting postion **B5R** (see table ch.2b)

	P ₁ hp	n ₂ rpm	P ₂ hp	M ₂ Ib ft	fs	Gea	ar reducer - mo	tor		i
	1)						2)			
40		27	32,9	76 819	0,75	MR	V 250 - 200 L	4		63
		33,3 34 34	35,3 35,4 33,6	66 930 65 551 62 284	1,32 1,25 1	MR MR MR	IV 250 - 200 L IV 250 - 200 L V 250 - 200 L	* 4 4 4	2,5 2	56 x 20 x 25 50
	26,8 28,6	42,5 42,5 42,5 42,5	35,3 33,7 35,6 34	52 372 49 911 52 768 50 378	0,9 0,71 1,6 1,25	MR MR MR MR	IV 200 - 200 L V 200 - 200 L IV 250 - 200 L V 250 - 200 L	* 4 4 4 4	2 2	x 20 40 x 20 40
	31	53,1	36	42 687	1	MR	IV 200 - 200 L	* 4	2	x 16
	31,3	53,1 53,1 53,1	34,2 36,3 35,4	40 614 43 086 42 025	0,9 1,8 1,32	MR MR MR	V 200 - 200 L IV 250 - 200 L V 250 - 200 L	4 4 4	2	32 x 16 32
		68 68	35,6 35,9	33 037 33 259	1 1,8	MR MR	V 200 - 200 L V 250 - 200 L	4 4		25 25
		85 85	35,9 36,1	26 621 26 741	1,32 2,24	MR MR	V 200 - 200 L V 250 - 200 L	4 4		20 20
		106 106	36,5 36,7	21 672 21 767	1,4 2,65	MR MR	V 200 - 200 L V 250 - 200 L	4 4		16 16
		131	36,7	17 684	1,7	MR	V 200 - 200 L	4		13
50	,-	34	43,6	80 846	1,06	MR	IV 250 - 225 S	4	2	x 25
	41,6	34	41,4	76 817	0,8	MR	V 250 - 225 S	4		50
	41,5	42,5	43,9	65 081	1,25	MR	IV 250 - 225 S	4	2	x 20

						1)202
	Р 1 пр	n ₂ rpm	P ₂ hp	M ₂ lb ft	fs	Gear reducer - motor i
	1)					2)
50	01.0	42,5	41,9	62 132	1	MR V 250 - 225 S 4 40
	31,3	53,1 53,1 53,1	42,2 44,8 43,7	50 090 53 139 51 830	0,71 1,5 1,12	MR V 200 - 200 LG 4 32 MR IV 250 - 225 S 4 2 x 16 MR V 250 - 225 S 4 32
	41	68 68	44 44,3	40 746 41 020	0,8 1,5	MR V 200 -200 LG 4 25 MR V 250 -225 S 4 25
		85 85	44,3	32 833 32 980	1,06 1,8	MR V 200 - 200 LG 4 20 MR V 250 - 225 S 4 20
		106 106	45,1 45,3	26 729 26 846	1,18 2,12	MR V 200 - 200 LG 4 16 MR V 250 - 225 S 4 16
		131	45,3	21 811	1,4	MR V 200 - 200 LG 4 13
60	39,6	34	53	98 327	0,85	MR IV 250 - 225 M 4 2 × 25
	41,5 44	42,5 42,5	53,4 51	79 153 75 566	1,06 0,85	MR IV 250 - 225 M 4 2 × 20 MR V 250 - 225 M 4 40
	49,3	53,1 53,1	54,5 53,1	64 629 63 037	1,18 0,9	MR IV 250 - 225 M 4 2 x 16 MR V 250 - 225 M 4 32
		68	53,8	49 889	1,18	MR V 250 - 225 M 4 25
		85	54,1	40 111	1,5	MR V 250 - 225 M 4 20
		106	55	32 651	1,7	MR V 250 - 225 M 4 16
75	57,3	53,1	64,9	77 045	0,75	MR V 250 - 250 M * 4 32
		68	65,8	60 975	1	MR V 250 - 250 M * 4 25
		85	66,1	49 024	1,18	
		106	67,3	39 907	1,4	MR V 250 - 250 M * 4 16

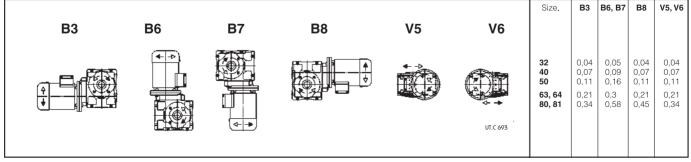
1) Powers valid for continuous duty S1; **increase** possible for S2 ... S10 (see ch. 2b) in which case P₂, M₂ increase and fs decreases proportionately, 2) For complete designation when ordering see ch. 3.

ATOORSANAT


66

MR V 32 ... 81

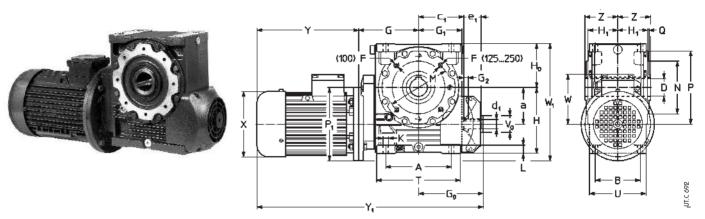
Design¹⁾ standard worm extension


UO3A UO3D

S	ize	а	Α	C ₁	D	d,	F	G	н	\mathbf{H}_{o}	\mathbf{H}_{1}	к	L	м	N	Р	т	z	P ₁	х	١	Y		(1	w	\mathbf{W}_1	Ma	ass
					Ø	Ø						Ø		Ø	Ø	Ø			Ø	Ø	۶	×		≈	ø	*	lt	o
red.	motor				H7				h11	h11	h12				h6					*								
	B5		В			e ₁	2)						\mathbf{L}_1			Q	U					3)		3)				3)
32	63 71 ⁷⁾	1,26	2,4 2,05	2,01	0,748	0,433 0,79	M 5 4)	2,99	2,8	1,89	1,36	0,28	0,39 0,33	2,95	2,165 5)	3,54 0,12	3,58 2,6	1,54	5,51 5,51	4,8 5,51	7,28 8,86	9,02 -	12,17 13,74	13,9 -	3,98 4,41	6,73 7,17	18 24	22
40	63 71 80 ⁷⁾	1,57	2,76 2,44	2,26	0,945	0,551 0,98	M 6 4)	3,43	3,23	2,2	1,63	0,37	0,47 0,39	3,35	2,677 5)	4,13 0,12	4,17 3,15	1,81	5,51 6,3 6,3	4,8 5,51 6,3	7,28 8,31 9,65	9,02 10,83 -	12,91 13,94 15,28	14,65 16,46	3,98 4,41 4,8	6,73 7,56 7,95	24 31 40	29 37 -
50	63 71 80 90 ⁷⁾	1,97	3,39 2,95	2,78	1,102	0,63 1,18	M6 4)	3,86	3,94	2,64	1,93	0,37	0,51 0,47	3,94	3,346 5)	4,72 0,12	4,96 3,74	6)	5,51 6,3 7,87 7,87	4,8 5,51 6,3 7,09	7,28 8,31 9,09 10,63	9,02 10,83 12,09	13,78 14,8 15,59 17,13	15,51 17,32 18,58 -	3,98 4,41 4,8 5,87	7,36 7,76 8,74 9,8	31 40 49 62	35 46 60 -
63 64	71 80 90 100 ⁷⁾	2,48	4,02 3,54	3,27	1,26	0,748 1,18	M 8	4,65	4,92	3,15	2,3	0,45	0,63 0,55	3,94	3,15	4,72 0,12	5,94 4,49	2,48	6,3 7,87 7,87 7,87 7,87	5,51 6,3 7,09 8,15	8,31 9,09 10,63 13,5	10,83 12,09 13,98	16,1 16,89 18,43 21,3	18,62 19,88 21,77	4,41 4,8 5,87 6,46	8,78 9,57 9,8 10,39	51 60 73 88	57 71 84 -
80 81	80 90 100 ⁸⁾ *112 ⁸⁾	3,15	5,2 4,17	4,06	1,496 (80) 1,575 (81)	0,945 1,42	M 10	5,43	5,91	3,94	2,74	0,55	0,79 0,67	5,12	4,331	6,3 0,14	7,44 5,31	2,95	7,87 7,87 9,84 9,84	6,3 7,09 8,15 8,15	9,09 10,63 13,5 13,5	12,09 13,98 16,5 16,5	18,46 20 22,87 22,87	21,46 23,35 25,87 25,87	4,8 5,87 6,46 6,46		82 95 110 132	93 106 126 157

See ch. 3 for motor design.
 Working length of thread 2 · F.
 Values valid for brake motor.
 Holes turned through 45° with respect to the drawing.

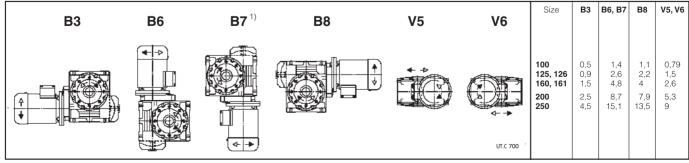
4) Holes turned in ought 40 with respect to the data and a state of the st


Mounting positions - direction of rotation - and oil quantities [gal]

Unless otherwise stated, gearmotors are supplied in mounting position B3 (B3 and B8 for sizes < 64) which, being standard, is omitted from the designation.

MR V 100 ... 250

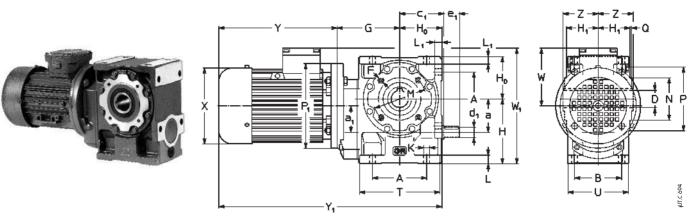
Design¹⁾


standard

UO2A⁵⁾

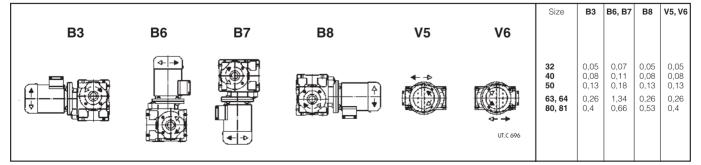
	ize	а	Α	C.	D	d.	F	G	G	G.	н	H.	к	1	м	N	Р	т	V _o	z	P.	х	,	v	\ \	(w	W.	Ma	200
	126	Ľ		•1	ø	Ø	· ·	ŭ		G 1	h11	h12	ø	-	Ø	ø	ø		ø	-	Ø	ø		~		- 1 ~	~	× 1		55 b
red.	motor		в		H7	e ,				G,	H	1112				h6	Q	υ	max		2	2						~	1	
iou.	B 5						2)			G 2	h11						~		max					4)		4)				4)
100	90 100 112 *132 ⁷⁾	3,94	7,09 5,16	5,12	1,89	1,102 1,65	M 12	6,69 7,48	7,09	4,8 0,43	7,09 4,92	3,33	0,63	0,91	6,5	5,118	7,87 0,14	9,29 6,5	1,77	3,54	7,87 9,84 9,84 11,81	8,15 8,15		16,5		30,28 31,3		12,8 13,78 13,78 14,76	137 152 174 229	148 168 198 254
125 126	100 112 132 160 ⁶⁾	4,92	8,86 6,1	6,1	2,362	1,26 2,28	M 12 ⁸	8,07	8,7	5,83 0,59	8,86 5,91	3,92	0,71	1,1	8,46	7,087	9,84 0,16	11,3 7,64	1,97	4,17	9,84 9,84 11,81 1 <mark>1,81</mark>	8,15 10,24	13,5 13,5 15,83 21,26	21,14	30,28 30,28 32,6 38,03	34,29	6,46 6,46 7,72 9,25	15,75 15,75 16,73 16,73	227 249 315 381	243 273 351 -
160 161	112 132 160 180 ⁸⁾	6,3	10,71 7,2	7,36	2,756 (160) 2,95 (161)		M 14 ⁸	9,72 10,24	10,04	7,01 0,59	11,02 7,09	4,67	0,87	1,3	10,43	9,055	11,81 0,16	13,58 9,13		4,92	9,84 11,81 13,78 13,78	10,24 12,4	21,26	17,52 21,14 24,96 24,96	35,59 41,54	45,24	6,46 7,72 9,25 10,12	18,31 19,29 20,28 20,28	379 448 520 639	403 483 573 573
200	132 160 180 *200	7,87	13,46 8,43	9,25	3,543	1,89 3,23	M16 ⁸	11,5 12,01	12,76	8,74 0,79	13,19 8,86	5,41	1,06	1,57	11,81	9,843	13,78 0,2	16,97 10,63	3,15	5,91	13,78	12,4 13,94		24,96 28,9	46,02 48,98		9,25 10,12	23,62	675 747 866 924	710 800 946 1012
250	160 180 200 225 250 ⁶⁾	9,84	16,73 9,84	11,3	4,331	2,165 3,23	M 20 ⁸ 3)	14,17 14,57	14,92		16,14 11,02	6,42	1,3	1,97	15,75	13,78	17,72 0,2	21,14 12,6	3,15	7,09	13,78 15,75 17,72	13,94	24,21 24,21 27,17		53,31	57,99 -	10,12 10,12 11,5	27,76 27,76 28,74 29,72 29,72	1087 1206 1263 1396 1470	1140 1285 1351 -

1) See ch. 3 for motor design.
2) Working length of thread 2 · F.
3) Holes turned through 22° 30' with respect to the drawing.
4) Values valid for brake motor.
5) Prearranged design for worm shaft extension (see ch. 2).
6) Mounting position B5R (see ch. 2b), brake motor not possible.
7) On request for 132M 4 also available mouting position B5R (see ch. 2b).
8) Brake motor F0 132MB not possible. For motor 200LG 4, X dimension increases by 2,87 in, Y and Y₁ dimensions increase by 4,33 in and mass by 77 lb, brake motor not possible.


Mounting positions - direction of rotation - and oil quantities [gal]

Unless otherwise stated, gearmotors are supplied in mouting positions **B3** which, **being standard**, is **omitted** from the designation. 1) Sizes 200 and 250 in **B7**, mounting position with *n*₁ > 710 rpm, carry a price addition.

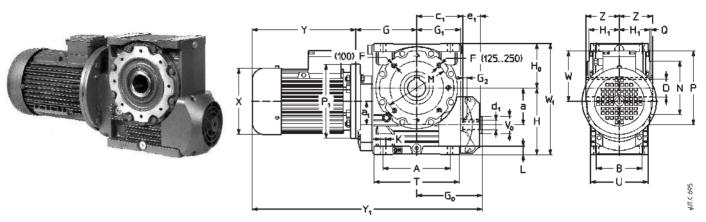
MR IV 32 ... 81


Design¹⁾ standard

worm extension

Si	ze	а	Α	C ₁	D	d ₁	F	G	н	\mathbf{H}_{o}	\mathbf{H}_{1}	κ	L	М	Ν	Ρ	т	z	\mathbf{P}_1	х	•	Y		(1	w	\mathbf{W}_1	Ma	ass
					Ø	Ø						Ø		Ø	Ø	Ø			Ø	Ø	5	8		~	~	~	1	b
red.	motor				H7				h11	h11	h12				h6					R								
	B5	a,	в			e ₁	2)			G			L_1			Q	U					3)		3)				3)
32	63	1,26 1,26	2,4 2,05	2,01	0,748	0,433 0,79	M 5 4)	2,99	2,8	1,89	1,36	0,28	0,39	2,95	2,165 5)	3,54 0,12	3,58 2,6	1,54	5,51	4,8	7,28	9,02	12,17	13,9	3,98	6,77	18	22
40	63 71	1,57 1,57	2,76 2,44	2,26	0,945	0,551 0,98	M 6 4)	3,43	3,23	2,2	1,63	0,37	0,47 0,39	3,35	2,677 5)	4,13 0,12	4,17 3,15		5,51 6,3	4,8 5,51	7,28 8,31	9,02 10,83	12,91 13,94	14,65 16,46	3,98 4,41	7,2 7,64	24 31	29 37
50	63 71 80	1,97 1,57	3,39 2,95	2,78	1,102	0,63 1,18	M 6 4)	3,86	3,94	2,64	1,93	0,37	0,51 0,47	3,94	3,346 5)	4,72 0,12	4,96 3,74	2,09 6)	5,51 6,3 7,87	4,8 5,51 6,3	7,28 8,31 9,09	9,02 10,83 12,09	13,78 14,8 15,59	15,51 17,32 18,58	3,98 4,41 4,8	7,52 7,95 8,74	31 40 49	35 46 60
63 64	71 80 90 ⁸⁾	2,48 1,97	4,02 3,54	3,27	1,26	0,748 1,18	M 8	4,65	4,92	3,15	2,3	0,45	0,63 0,55	3,94	3,15	4,72 0,12	5,94 4,49	2,48	6,3 7,87 7,87	5,51 6,3 7,09	8,31 9,09 10,63	10,83 12,09 13,98	16,1 16,89 18,43	18,62 19,88 21,77	4,41 4,8 5,87	8,82 9,21 10,28	51 60 73	57 71 84
80 81	80 90	3,15 1,97	5,2 4,17	4,06	1,496 (80) 1,575	0,945 1,42	M 10	5,43	5,91	3,94	2,74	0,55	0,79 0,67	5,12	4,331	6,3 0,14	7,44 5,31	2,95	6,3 7,87 7,87	5,51 6,3 7,09	8,31 9,09 10,63	10,83 12,09 13,98	17,68 18,46 20	20,2 21,46 23,35	4,41 4,8 5,87	9,84 9,84 10,59	73 82 95	79 93 106
	100 ⁷⁾				(81)														7,87	8,15	13,5	-	22,87	-	6,46	11,18	110	-

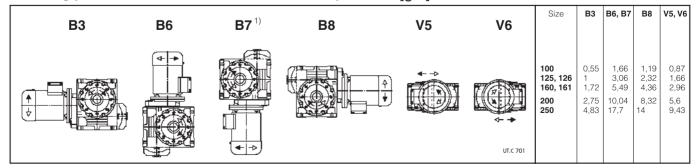
See ch. 3 for motor design.
 Working length of thread 2 · F.
 Values valid for brake motor.
 Holes turned through 45° with respect to the drawing.
 Tolerance 18.
 Option 6 P₁ = 6.3, with price addition: consult us.
 Mounting position B5R (see ch. 2b); brake motor not possible.
 Brake motor F0 90LB and 90LC not possible.


Mounting positions - direction of rotation - and oil quantities [gal]

Unless otherwise stated, gearmotors are supplied in mounting position B3 (B3 and B8 for sizes < 64) which, being standard, is omitted from the designation.

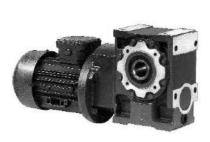
MR IV 100 ... 250

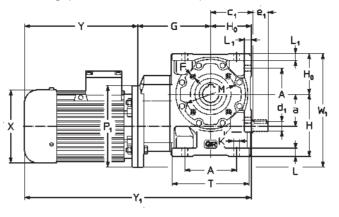
Design¹⁾

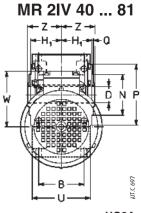

standard

UO2A⁵⁾

5	Size	а	Α	C ₁	D Ø	\mathbf{d}_{1}	G	\mathbf{G}_0	\mathbf{G}_1	H h11	H ₁	K Ø	L	M Ø	N Ø	Р Ø	Т	V ₀ Ø	Z	P ₁ Ø	X Ø	Ŷ		Y	1	W	W ₁ ≈	Ma	
red.	motor B5	a 1	в		H7	e ₁			\mathbf{G}_2	H ₀ h11	1112	Q		F 2)	h6	Q	U	max		Ø	2 *		4)		4)	R	R		4)
100	80 90 100 112	3,94 2,48	7,09 5,16	5,12	1,89	1,102 1,65	6,69	7,09	4,8 0,43	7,09 4,92	3,33	0,63	0,91	6,5 M 12	5,12	7,87 0,14	9,29 6,5	1,77	3,54	7,87 7,87 9,84 9,84	6,3 7,09 8,15 8,15	13,5	13,98 16,5	22,87 24,41 27,28 27,28	27,76 30,28	4,8 5,87 6,46 6,46	12,01 12,01 12,09 12,09	11,7 12,9 14,3 16,4	12,7 13,9 15,8 18,6
125 126	90 100 112 132 ⁸⁾	4,92 3,15	8,86 6,1	6,1	2,362	1,260 2,28	8,07	8,7	5,83 0,59	8,86 5,91	3,92	0,71	1,1	8,46 M 12 ⁸	7,09	9,84 0,16	11,3 7,64	1,97	4,17	7,87 9,84 9,84 11,81	8,15 8,15	13,5 13,5	17,52	30,28 30,28		5,87 6,46 6,46 7,72	14,76 14,76 14,76 14,8	20 21 24 30	21 23 26 33
160 161	100 112 132 160 180M ⁷⁾	6,3 3,94	10,71 7,2	7,36	2,756 (160) 2,953 (161)	1,496 2,28	9,72 10,24	10,04	7,01 0,59	11,02 7,09	4,67	0,87	1,3	10,43 M 14 ⁸	9,06	11,81 0,16	13,58 9,13	2,36	4,92	9,84 9,84 11,81 13,78 13,78	12,4		21,14 24,96		37,28 40,91	6,46 6,46 7,72 9,25 10,12	18,11 18,11 18,11 18,11 18,11 18,78	34 36 42 49 60	35 38 45 54 -
200	100 112 132 160 180 200 ⁶⁾	7,87 3,94	13,46 8,43	9,25	3,543	1,89 3,23	11,5	12,76	8,74 0,79	13,19 8,86	5,41	1,06	1,57	11,81 M 16 ⁸	9,84	13,78 0,2	16,97 10,63		5,91	9,84 9,84 11,81 13,78 13,78 13,78	10,24 12,4	13,5 15,83 21,26 24,21	17,52 21,14 24,96	37,76 40,08	45,39 49,72	7,72 9,25 10,12	22,05 22,05	56 58 63 70 81 87	57 60 67 75 89
250	132 160 180 200 225	9,84 4,92	16,73 9,84	11,3	4,331	2,165 3,23	14,17	14,92		16,14 11,02	6,42	1,3	1,97	15,75 M 20 ⁸ 3)	13,78	17,72 0,2	21,14 12,6	3,15	7,09	11,81 13,78 13,78 15,75 17,72	12,4 13,94	15,83 21,26 24,21 24,21 24,21 27,17	24,96 28,9		54,06 57,99	9,25 10,12	27,17 27,17 27,17 27,17 27,17	113	99 107 121 127 -


See ch. 3 for motor design.
 Working length of thread 2 · F.
 Holes turned through 22° 30° with respect to the drawing.
 Values valid for brake motor.
 Prearranged design for worm shaft extension (see ch. 2).
 Mounting position B5R (see ch. 2b), brake motor not possible.
 Brake motor rol possible.
 Brake motor F0 132MC not possible.


Mounting positions - direction of rotation - and oil quantities [gal]



Unless otherwise stated, gearmotors are supplied in mouting positions **B3** which, being standard, is **omitted** from the designation. 1) Sizes 100 ... 250 in mounting position **B6** carry a price addition.

MR 2IV 100 ... 126

UO3A UO3D

Design¹⁾ standard worm extension

	$Size a A c, D d, F G_0 G, H H, K L M N P T V_0 Z P, X V V, W M, Mass lb$																												
Des stanc	esign ¹⁾																												
		a	Α	C ₁	_		F	G ₀	G ₁				L				J			P ₁					¥ ¥ 1 ≈		₩ ₁	Ma	D2A ⁴⁾
		a	AB	C ₁	_		F	G ₀	G ₁ G ₂				L				T			P ₁					¥ ¥1 ≈		₩ ₁	Ma	D2A ⁴⁾
S	Size	a		C ₁	ø	ø	F	Ű		h11			L L		Ø	Ø	T	Ø		P ₁	Ø				¥ ¥1 ≈		₩ ₁	Ma	D2A ⁴⁾
S	Size	1,57 2,44	B	2,26	Ø H7 0,945	ø		Ű		h11 H ₀ h11 3,23 2,2	h12 1,63	Ø 0,37	L ₁ 0,47 3 0,39	Ø 3,35	Ø	Ø Q 4,13 0,12	4	Ø	Z 1,81	P ₁ Ø 5,51	Ø ≈ 4,8			13,66	~		₩ ₁ ≈ 6,73	Ma	D2A ⁴⁾ ass b
red.	Size motor B5	1,57 2,44 1,97	B 2,76 3,39 2,95	2,26	Ø H7 0,945	Ø e ₁ 0,551	2) M 6	G	G ₂	h11 H ₀ h11 3,23 2,2 3,94 2,64	h12 1,63 1,93	Ø 0,37 0,37	L ₁ 0,47 3 0,39 0,51 3 0,47	Ø 3,35 3,94	Ø h6 2,677	Ø Q 4,13 0,12	4	Ø	Z 1,81 2,09	P ₁ Ø 5,51 5,51 6,3	Ø ≈ 4,8 5,51		3)	13,66 14,53 15,55	≈ 3) 15,39 16,26	*	*	Ma	D2A ⁴⁾ ass b
red.	Size motor B5 63 63	1,57 2,44 1,97	B 2,76 3,39	2,26 2,78 3,27	Ø H7 0,945	Ø e ₁ 0,551 0,98 0,63	2) M 6 5) M 6	G - 4,17	G ₂	h11 H ₀ h11 3,23 2,2 3,94 2,64	h12 1,63 1,93	Ø 0,37 0,37	L ₁ 0,47 3 0,39 0,51 3	Ø 3,35 3,94	Ø h6 2,677 6) 3,346	Ø Q 4,13 0,12 4,72	4,17 3,15 4,96	Ø	Z 1,81 2,09	P ₁ Ø 5,51	Ø ≈ 4,8 5,51 5,51 6,3	7,28	3) 9,02 9,02	13,66	≈ 3) 15,39 16,26 18,07 19,69	≈ 3,98 3,98	€,73 7,36	Ma 1 24,3 31	D2A ⁴⁾ ass b 3) 28,7 35

100 112 M See ch. 3 for motor design.
 Working length of thread 2 · F.
 Values valid for brake motor.

4.92

3.94 7.09 5.12

5,16

8,86 6,1 6,1

(81)

1,89

2,362

80

90

90

100

125

126

4) Prearranged design for worm shaft extension (see ch. 2).
5) Holes turned through 45° with respect to the drawing.
6) Tolerance t8.

7.09

5,83 8,86 0,59 5,91

3.33 0.63 0.91 6.5

1,1

3.92 0.71

7 09 4 8

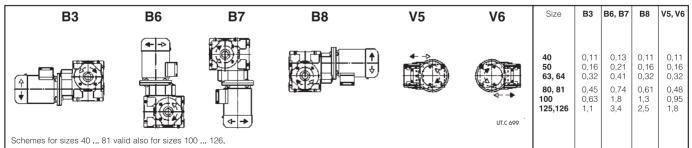
8,7

9.8

7,99 0,43 4,92

Mounting positions - direction of rotation - and oil quantities [gal]

M 12


M 12

1 102

1,65

1,26

2.28

5.118 7.87 9.29 1.77 3.54

8.46 7.087 0,14 6,5

9,84 0.16

11,3 7.64

1.97

4.13

Unless otherwise stated, gearmotors are supplied in mounting position B3 (B3 and B8 for sizes < 64) which, being standard, is omitted from the designation.

7,87 6,3 7,87 7,09

7,87 7,09

9,84 8,15 9,84 8,15

9.09 12.09

10,63

10,63

13,5 13,5

13,98

13,98

16,5 16,5

24,17 27,17 25,71 29,06

29,13 32,01 32,01 32,48 35 35 4,8 5,87 12,8 12,8 130 143

5,87 14,76 15,75 15,75 223 238 251

6,46 6,46

141

154

234

254 271

11 - Combined gear reducer and gearmotor units

Table A - Nominal torques for final gear reducer

	Final gear reducer size / <i>i</i> worm gear pair													
		50 /20			63 /25			80 /25			81 /25			
n ₂ rpm	M _{N2} Ib in	η	M _{2max} Ib in	M _{N2} Ib in	η	M _{2max} Ib in	M _{N2} Ib in	η	M _{2max} Ib in	M _{N2} Ib in	η	M _{2max} Ib in		
11,2 9 4,5	1 800 1 800 1 900	0,7 0,68 0,66	3 000 3 150 3 350	2 800 3 000 3 350	0,7 0,69 0,66	5 000 5 300 6 000	5 600 5 600 6 300	0,72 0,71 0,68	9 500 10 000 11 200	6 700 6 700 7 100	0,72 0,71 0,68	10 600 10 600 11 800		
2,24 1,12 0,56	2 120 2 240 2 240*	0,64 0,62 0,6	3 550 3 550 3 550	3 750 4 250 4 250	0,64 0,62 0,6	6 300 6 300 6 300	7 100 7 100 7 100*	0,65 0,63 0,61	11 800 11 800 11 800	7 500 8 000 8 000*	0,65 0,63 0,61	12 500 12 500 12 500		
0,28 0,14 ≤ 0,071	2 240** 2 240** 2 240**	0,58 0,57 0,55	3 550 3 550 3 550	4 250* 4 250* 4 250*	0,58 0,57 0,55	6 300 6 300 6 300	7 100** 7 100** 7 100**	0,59 0,58 0,56	11 800 11 800 11 800	8 000** 8 000** 8 000**	0,59 0,58 0,56	12 500 12 500 12 500		
M ₂ Size [Ib in]		2 240			4 250			7 100			8 000			

*, ** In these cases *i*s required, provided that it always results \ge 1, can be reduced of **1,12** (*) or **1,18** (**).

Table B - Types of combined units

Type of combined unit		Final gear r	educer size	
	50	63	80	81
R V + R V	R V 50/20	R V 63/25	R V 80/25	R V 81/25
	+ R V or MR V 32	+ R V or MR V 32	+ R V or MR V 40 ⁵⁾ 5) <i>i</i> = 63 is not admitted.	+ R V or MR V 40 ⁵⁾ 5) <i>i</i> = 63 is not admitted.
RV + MRV 1) <i>i</i> _N ≈ 250 1 600	<i>i</i> final = 20	<i>i</i> final = 25	<i>i</i> final = 25	\dot{i} final = 25
MR V + R 2I, 3I	MR V 50-80B 4 B5A/70 ³⁾	MR V 63-80B 4 B5A/56 ³⁾	MR V 80-90L 4 B5/56	MR V 81-90L 4 B5/56
MR V + MR 21, 31	+ R 2I or MR 2I, 3I 40	+ R 2I or MR 2I, 3I 40	+ R 2I, 3I or MR 2I, 3I 50 ⁴⁾ for $M_{N2} \le 60$ daN m MR V 80-80B 4 B5A/56 ³⁾ + R 2I or MR 2I, 3I 40	+ R 2I, 3I or MR 2I, 3I 50 ⁴⁾
i _N ≈ 160 4 000	<i>i</i> final = 20	<i>i</i> final = 25	<i>i</i> final = 25	<i>i</i> final = 25
MR IV + R 2I	MR IV 50-71B 4 B5A/27,62)	MR IV 63-80B 4 B5A/22,13)	MR IV 80-80B 4 B5A/22,13)	MR IV 81-80B 4 B5A/22,13)
	+ R 2I or MR 2I, 3I 32 design: shaft end Ø 14	+ R 2I or MR 2I, 3I 40	+ R 2I or MR 2I, 3I 40	+ R 2I or MR 2I, 3I 40
MR IV + MR 2I, 3I				
	in 50 7	in	i	in
i _N ≈ 400 10 000	<i>Í</i> final = 50,7	<i>i</i> final = 63,5	i final = 63,5	i final = 63,5

For initial gear reducer performance see: this catalogue ch. 7 or 9 for worm gear reducer, i for coaxial gear reducers see cat. E. 1) An anchor link is fitted between initial and final gear reducer. 2) The gearmotor has 5,51 in motor mounting flange. 3) The gearmotor has 6,30 in motor mounting flange. 4) Gear reducer in «oversized B5 flange».

11 - Combined gear reducer and gearmotor units

Table A - Nominal torques for final gear reducer

		Final gear reducer size / <i>i</i> worm gear pair										
		100 /25			125 /32			160 /32				
n ₂ rpm	M _{N2} Ib in	η	M _{2max} Ib in	M _{N2} Ib in	η	M _{2max} Ib in	M _{N2} Ib in	η	M _{2max} Ib in			
11,2 9 4,5	11 200 11 800 13 200	0,74 0,73 0,69	19 000 20 000 22 400	18 000 18 000 20 000	0,74 0,73 0,69	30 000 31 500 37 500	33 500 35 500 37 500	0,76 0,75 0,71	56 000 60 000 71 000			
2,24 1,12 0,56	14 000 14 000 14 000*	0,67 0,65 0,63	23 600 23 600 23 600	22 400 25 000 26 500	0,66 0,64 0,61	40 000 42 500 42 500	45 000 45 000 45 000*	0,68 0,65 0,63	75 000 75 000 75 000			
0,28 0,14 ≪ 0,071	14 000** 14 000** 14 000**	0,61 0,59 0,57	23 600 23 600 23 600	26 500* 26 500* 26 500*	0,6 0,58 0,56	42 500 42 500 42 500	45 000** 45 000** 45 000**	0,61 0,59 0,57	75 000 75 000 75 000			
M ₂ Size [Ib in]		50 000			90 000			170 000				

*, ** In these cases *f*s required, provided that it always results ≥ 1, can be reduced of 1,12 (*) or 1,18 (**).

Table B - Types of combined units

Type of combined unit		Final gear reducer size										
	100	125	160									
RV+RV RV+RIV	R V 100/25	R V 125/32	R V 160/32									
	+ R V, IV or MR V, IV 50	+ R V, IV or MR V, IV 63	+ R V, IV or MR V, IV 80									
RV+MRV RV+MRIV												
	ر صنع) اتو										
i _N ≈ 315 8 000	<i>İ</i> final = 25	i final = 32	<i>i</i> final = 32									
MR V + R 2I, 3I	MR V 100-100LB 4 B5/56	MR V 125-112M 4 B5/43,8	MR V 160-132MB 4 B5/43,8									
	R 2I, 3I or MR 2I, 3I 634	R 2I, 3I or MR 2I, 3I 63 ⁴⁾	R 2I, 3I or MR 2I, 3I 80 ⁴⁾									
	for <i>M</i> _{№2} ≤ 10 000 lb in MR V 100-90L 4 B5/56		for <i>M</i> _{N2} ≤ 35 500 lb in MR V 160-132MB 4 B5A/43,8 ⁵⁾									
MR V + MR 2I, 3I	+ R 2I, 3I or MR 2I, 3I 50 ⁴⁾		R 2I, 3I or MR 2I, 3I 64 ⁴⁾									
			for $M_{N2} \le 315$ daN m MR V 160-112M 4 B5/43,8 + R 2I, 3I or MR 2I, 3I 63 ⁴⁾									
i _N ≈ 200 5 000	<i>i</i> final = 25	<i>i</i> final = 32	<i>i</i> final = 32									
MR IV + R 2I, 3I	MR IV 100-90L 4 B5/22,1	MR IV 125-112M 4 B5/17,3	MR IV 160-112M 4 B5/13,8									
	+ R 2I, 3I or MR 2I, 3I 50 ⁴⁾	+ R 2I, 3I or MR 2I, 3I 63 ⁴⁾	+ R 2I, 3I or MR 2I, 3I 63 ⁴⁾									
MR IV + MR 21, 31												
<i>i</i> _N ≈ 500 12 500	<i>i</i> final = 63,5	<i>i</i> final = 81,1	i final = 102									

For initial gear reducer performance see: this catalogue ch. 7 or 9 for worm gear reducer, i for coaxial gear reducers see cat. E. 1) An anchor link is fitted between initial and final gear reducer. 4) Gear reducer in «oversized B5 flange» (see ch. 17 cat. E); size 63 has a low speed shaft reduced to 1,10 in: «oversized B5 flange - Ø 1,10». 5) The gearmotor has 9,84 in motor mounting flange. 6) The gearmotor has 11,81 in motor mounting flange. 7) The gearmotor has 13,78 in motor mounting flange.

11 - Combined gear reducer and gearmotor units

Table A - Nominal torques for final gear reducer

		Final gear reducer size / <i>i</i> worm gear pair										
	N.4	161 /32	Λ.4		200 /32	1.4	Δ <i>Δ</i>	250 /40	Λ.4			
n ₂ rpm	M _{N2} Ib in	η	M _{2max} Ib in	M _{N2} Ib in	η	M _{2max} Ib in	M _{N2} Ib in	η	M _{2max} Ib in			
11,2 9 4,5 2,24 1,12 0,56 0,28 0,14 ≪ 0,071	40 000 42 500 45 000 50 000 50 000* 50 000** 50 000** 50 000**	0,76 0,75 0,71 0,68 0,65 0,63 0,61 0,59 0,57	60 000 67 000 75 000 80 000 80 000 80 000 80 000 80 000 80 000 80 000	63 000 67 000 75 000 90 000 90 000* 90 000** 90 000** 90 000**	0,78 0,77 0,73 0,69 0,67 0,64 0,63 0,61 0,58	106 000 112 000 132 000 150 000 150 000 150 000 150 000 150 000 150 000	106 000 112 000 125 000 140 000 150 000 170 000 170 000** 170 000**	0,79 0,78 0,69 0,66 0,64 0,61 0,6 0,57	1 800 000 1 800 000 2 240 000 2 650 000 2 650 000 2 800 000 2 800 000 2 800 000 2 800 000 2 800 000			
M ₂ Size [daN m]		50 000			90 000			170 000				

Table B - Types of combined units

Type of combined unit		Final gear reducer size										
	161	200	250									
RV+RV RV+RIV	R V 161/32	R V 200/32	R V 250/40									
	+ R V, IV or MR V, IV 80	+ R V, IV or MR V, IV 100	+ R V, IV or MR V, IV 125									
RV+MRV RV+MRIV												
1) UIC 750	ورصن											
<i>i</i> _N ≈ 315 10 000	<i>i</i> final = 32	<i>İ</i> final = 32	<i>i</i> final = 40									
MR V + R 2I, 3I	MR V 161-132MB 4 B5/43,8	MR V 200-180L 4 B5/43,8	MR V 250-200L 4 B5A/357)									
	R 2I, 3I or MR 2I, 3I 80 ⁴⁾	R 2I, 3I or MR 2I, 3I 100 ⁴⁾	R 2I, 3I or MR 2I, 3I 101 ⁴⁾									
	for $M_{\rm N2} \leq 35500$ lb in	for $M_{\rm N2} \leq 71000$ lb in	for $M_{\rm N2} \le 128\ 000$ lb in									
	MR V 161-132MB 4 B5A/43,8 ⁵⁾	MR V 200-180L 4 B5A/43,86)	MR V 250-180L 4 B5/35									
MR V + MR 2I, 3I	R 2I, 3I or MR 2I, 3I 64 ⁴⁾	R 2I, 3I or MR 2I, 3I 814)	R 2I, 3I or MR 2I, 3I 100 ⁴⁾									
		for <i>M</i> _{N2} ≤ 60 000 lb in MR V 200-132MB 4 B5/43,8 + R 2I, 3I or MR 2I, 3I 80 ⁴⁾										
i _N ≈ 200 6 300	<i>İ</i> final = 32	<i>i</i> final = 32	<i>i</i> final = 40									
MR IV + R 2I, 3I	MR IV 161-112M 4 B5/13,8	MR IV 200-132MB 4 B5/17,1	MR IV 250-180L 4 B5/13,7									
	+ R 2I, 3I or MR 2I, 3I 63 ⁴⁾	+ R 2I, 3I or MR 2I, 3I 80 ⁴⁾	+ R 2I, 3I or MR 2I, 3I 100 ⁴⁾									
MR IV + MR 2I, 3I												
<i>i</i> _N ≈ 500 16 000	i final = 102	<i>i</i> final = 81,8	<i>i</i> final = 102									

12 - Radial loads¹⁾ F_{r1} [lb] on high speed shaft end OHL

Radial loads generated on the shaft end by a drive connecting gear reducer and motor must be less than or equal to those given in the relevant table.

The radial load F_{r1} given by the following formula refers to most common drives:

$$F_{r1} = \frac{189\ 090\cdot\ P_1}{d\cdot\ n_1} \quad \text{[Ib]} \qquad \text{for timing belt drive}$$

 $F_{r1} = \frac{315\ 150 \cdot P_1}{d \cdot n_1}$ [Ib] for V-belt drive

where: P_1 [hp] is power required at the input side of the gear reducer, n_1 [rpm] is the speed, d [in] is the pitch diameter.

Gear reducer size n. 32 40 50 63, 64 80.81 100 125, 126 160, 161 200 250 RPN RV R IV R V **BIV** Rν B IV RV B IV R V R IV RV **BIV** RV R IV RV R IV R V B IV RV **BIV** 67 75 1 800 30 34 23,6 27 45 35.5 35.5 100 56 150 56 22/ an 225 160 500 355 560 355 800 530 50 40 40 63 1 1 2 0 112 170 63 250 101 375 180 560 400 630 400 900 600 710 40 32 60 48 90 48 132 75 200 75 300 119 450 212 670 475 750 475 1060 710 50 75 60 112 60 170 95 250 95 375 151 560 265 850 600 950 600 1320 900 355 40

1) An axial load of up to 0,2 times the value in the table is permissible, simultaneously with the radial load. If exceeded consult us,

13 - Radial loads Fr2 [lb] on low speed shaft end OHL

Axial loads F_{a2}

Permissible F_{a2} is shown in the column where direction of rotation of low speed shaft (black or white arrow) and direction of the axial force (solid or broken arrow) correspond to those of the gear reducer in question. Direction of rotation and direction of force may be established viewing the gear reducer from any point, providing the same point adopted for both.

Wherever possible, choose the load conditions corresponding the column on the **right**.

Radial loads F_{r2}

Radial loads generated on the shaft end by a drive connecting gear reducer and machine must be less than or equal to those given in the relevant table.

Normally, radial loads on low speed shaft ends are considerable: in fact there is a tendency to connect the gear reducer to the machine by means of a transmission with high transmission ratio (economizing on the gear reducer) and with small diameters (economizing on the drive and for requirements distand by every dimension)

the drive, and for requirements dictated by overall dimensions). Bearing life and wear (which also affect gears unfavourably) and low speed shaft strength, clearly impose limits on permissible radial load.

The high value which radial load may take on, and the importance of not exceeding permissible values, make it necessary to take full advantage of the gear reducer's possibilities.

Permissible radial loads given in the table are therefore based on: the product of speed n_2 [x 1 000 rpm] multiplied by bearing life L_h [h] required, the direction of rotation, the angular position φ [°] of the load and torque M_2 [lb] required.

Radial loads given in the table are valid for overhung loads on centre line of low speed shaft end, i.e. operating at a distance of $0,5 \cdot E$ (E = shaft end length) from the shoulder. If operating at $0,315 \cdot E$ multiply by 1,25; if operating at $0,8 \cdot E$ multiply by 0,8.

IMPORTANT: An axial/radial load of up to 0,2 times the value in table is permissible simultaneously with radial load. If exceeded consult us.

 $= \frac{126\ 060 \cdot P_2}{d \cdot n_2}$ [Ib] for chain drive (lifting in general); for timing belt drive replace 126\ 060 with 189\ 090

Radial loads given in the table are valid for overhung loads on centre line of high speed shaft end, i.e. operating at a distance of $0.5 \cdot e$

(e = shaft end length) from the shoulder. If they operate at $0,315 \cdot e$

multiply by 1,25; if they operate at 0,8 · e multiply by 0,8.

$$F_{r_2} = \frac{315 \ 150 \cdot P_2}{d \cdot n_2}$$
 [Ib] for V-belt drive

$$F_{r_2} = \frac{134 \ 112 \cdot P_2}{d \cdot n_2}$$
 [Ib] for spur gear pair drive

$$F_{r_2} = \frac{447546 \cdot P_2}{d \cdot n_2}$$
 [Ib] for friction wheel drive (rubber-on-
metal)

where: P_2 [hp] is power required at the output side of the gear reducer, n_2 [rpm] is the speed, *d* [in] is the pitch diameter.

13 - Radial loads F_{r_2} [Ib] on low speed shaft end OHL

For radial loads acting simultaneously on both sides consult us.

Train	Í _N		Gear reducer size											
of gears							F _{r2} ¹⁾ [lb]							
		32	40	50	63, 64	80, 81	100	125, 126	160	161	200	250		
v	10 13 16 20 25 32 40 50 63	300 315 315 400 400 400 400 -	335 400 450 450 450 450 560 560 560	355 450 500 560 630 750 750 800	450 530 600 670 750 900 900 1 000	600 750 850 950 1 060 1 320 1 320 1 500	800 900 1 000 1 120 1 320 1 600 1 600 1 800	950 1 060 1 250 1 250 1 400 1 600 2 000 2 000 2 240	1 400 1 400 1 600 1 600 1 800 2 120 2 650 2 650 3 150	5 600 6 700 6 700 6 700 6 700 6 700 6 700 6 700 6 700 6 700	9 000 9 500 9 500 10 000 10 000 10 000 10 000 10 000	- 11 200 11 200 12 500 13 200 12 500 14 000 14 000		
IV	50 63 80 100 125 160 200 250 315	400 400 400 400 - - - -	560 560 560 560 560 560 560	670 800 800 800 800 800 800 -	800 900 1 180 1 180 1 180 1 180 1 180 - -	1 000 1 180 1 320 1 320 1 320 1 320 1 320 - -	1 320 1 600 2 800 2 800 2 800 2 800 2 800 2 800 2 800 2 800	1 600 1 900 2 120 4 000 4 000 4 000 4 000 4 000 4 000	2 000 2 500 2 800 6 000 6 000 6 000 6 000 6 000 6 000	6 700 6 700 6 700 6 700 6 700 6 700 6 700 6 700 6 700 6 700	10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000	14 000 14 000 14 000 14 000 14 000 14 000 14 000 14 000 14 000		
2 IV	$\begin{array}{c} 80\\ 100\\ 106\\ 112\\ 125\\ 132\\ 140\\ 160\\ 170\\ 180\\ 200\\ 212\\ 224\\ 250\\ 265\\ 280\\ 300\\ 315\\ 355\\ 375\\ 400\\ 450\\ 475\\ 600\\ \end{array}$	S	- 560 - 560 - 560 - 560 - 560 - -	800 800 800 800 800 800 800 	1 180 1 180 1 180 1 180 1 180 1 180 1 180 1 180	- 1 800 - 1 800 - 1 800 - 1 800 - 1 800 1 800 - 1 800 - 1 800 - 1 800 - 1 800 - 1 800 - - - - - - - - - - - - -	2 800 1 800 2 800 - 2 800 - 2 800 - 2 800 2 800 2 800 - 2 800 2 800 - 2 800 2 800 - 2 800	2 120 2 120 - - - - - - - - - - - - -						

1) An axial/radial load of up to 0,2 times the value in table is permissible simultaneously with radial load. I exceeded consult us.

Worm gear pair

Number of teeth – wormwheel z_2 and worm z_1 , axial module m_x , reference lead angle γ_m , static efficiency η_s and worm gear pair moment of inertia J_1 for gear reducers and gearmotors **R V**, **R IV**, **MR V**, **MR IV**, **MR 2IV**.

In the case of $\rm R\,IV,\,MR\,IV$ and $\rm MR\,2IV$ gear reducers and gearmotors, the moment of inertia on the high speed shaft (disregarding motor) is that of the worm divided by the cylindrical gear pair total ratio squared.

						Gear red	ucer size				
i		32	40	50	63, 64	80, 81	100	125, 126	160, 161	200	250
7	$egin{array}{c} z_2/z_1 & & \ m_{\!\scriptscriptstyle X} & \ \gamma_{\!\scriptscriptstyle m} & \ \eta_{\!\scriptscriptstyle S} & \ \eta_{\!\scriptscriptstyle S} & \end{array}$	21/3 2,2 22° 28' 0,71	21/3 2,8 22° 28' 0,71	21/3 3,4 22° 35' 0,71	28/4 3,5 28° 35' 0,74	28/4 4,5 28° 30' 0,74	_	_	_	_	_
10	z_2/z_1 m_x γ_m η_s	20/2 2,3 15° 10' 0,65	20/2 2,8 15° 10' 0,65	20/2 3,5 15° 7' 0,65	30/3 3,3 19° 52' 0,69	30/3 4,2 20° 28' 0,7	30/3 5,3 21° 20' 0,7	30/3 6,6 21° 53' 0,7	30/3 8,6 23° 1' 0,72	_	_
13	$z_2/z_1 \ m_x \ oldsymbol{\gamma}_{ m m} \ oldsymbol{\eta}_{ m s}$	26/2 1,8 13° 28' 0,62	26/2 2,3 13° 14' 0,62	26/2 2,9 13° 36' 0,63	26/2 3,7 14° 23' 0,64	26/2 4,7 14° 48' 0,64	26/2 5,9 15° 24' 0,65	39/3 5,2 18° 48' 0,68	39/3 6,8 19° 52' 0,69	39/3 8,5 20° 38' 0,7	_
16	$egin{array}{c} Z_2/Z_1 & \ m_{ m x} & \ \gamma_{ m m} & \ \gamma_{ m s} & \ \eta_{ m s} \end{array}$	32/2 1,5 11° 52' 0,6	32/2 1,9 11° 53' 0,6	32/2 2,4 12° 4' 0,6	32/2 3,1 12° 47' 0,61	32/2 3,9 13° 14' 0,62	32/2 4,9 13° 47' 0,63	32/2 6,2 14° 7' 0,63	32/2 8 14° 52' 0,64	48/3 7,1 19° 4' 0,68	48/3 9 20° 21' 0,69
20	$z_2/z_1 \ m_x \ \gamma_m \ \eta_s$	20/1 2,3 7° 41' 0,5	20/1 2,8 7° 40' 0,5	20/1 3,5 7° 46' 0,5	40/2 2,5 11° 46' 0,6	40/2 3,2 12° 1' 0,6	40/2 4,1 12° 29' 0,61	40/2 5,1 12° 24' 0,61	40/2 6,6 13° 6' <mark>0,</mark> 62	40/2 8,3 13° 36' 0,63	40/2 10,4 14° 3' 0,63
25	$z_2/z_1 \ m_x \ \gamma_m \ \eta_s$	25/1 1,9 6° 55' 0,48	25/1 2,4 6° 52' 0,48	25/1 3 6° 58' 0,48	25/1 3,8 7° 21' 0,5	25/1 4,8 7° 34' 0,5	25/1 6,1 7° 53' 0,51	50/2 4,2 11° 33' 0, <mark>59</mark>	50/2 5,4 11° 49' 0,6	50/2 6,8 12° 28' 0,61	50/2 8,6 13° 18' 0,62
32	$z_2/z_1 \ m_{ m x} \ {m \gamma}_{ m m} \ {m \eta}_{ m s}$	32/1 1,5 6° 0,45	32/1 1,9 6° 0,45	32/1 2,4 6° 3' 0,45	32/1 3,1 6° 25' 0,46	32/1 3,9 6° 38' 0,47	32/1 4,9 6° 55' 0,48	3 <mark>2/1</mark> 6,2 7° 5' 0,49	32/1 8 7° 27' 0,5	32/1 10,1 7° 43' 0,51	64/2 6,8 11° 22' 0,59
40	$z_2/z_1 \ m_x \ \gamma_m \ \eta_s$	40/1 1,3 5° 12' 0,42	40/1 1,6 5° 10' 0,42	40/1 2 5° 16' 0,42	40/1 2,5 5° 54' 0,44	40/1 3,2 6° 2' 0,45	40/1 4,1 6° 16' 0,46	40/1 5,1 6° 13' 0,46	40/1 6,6 6° 34' 0,47	40/1 8,3 6° 50' 0,48	40/1 10,4 7° 3' 0,49
50	$egin{array}{c} Z_2/Z_1 \ m_x \ \gamma_m \ \eta_s \end{array}$	50/1 1 4° 29' 0,38	50/1 1,3 4° 25' 0,38	50/1 1,6 4° 32' 0,38	50/1 2,1 5° 7' 0,41	50/1 2,7 5° 15' 0,42	50/1 3,3 5° 27' 0,43	50/1 4,2 5° 48' 0,44	50/1 5,4 5° 56' 0,45	50/1 6,8 6° 15' 0,46	50/1 8,6 6° 41' 0,47
63	$z_2/z_1 \ m_{ m x} \ {m \gamma}_{ m m} \ {m \eta}_{ m s}$	_	63/1 1 3° 43' 0,34	63/1 1,3 3° 50' 0,35	63/1 1,7 4° 21' 0,38	63/1 2,1 4° 27' 0,38	63/1 2,7 4° 39' 0,39	63/1 3,4 4° 57' 0,4	63/1 4,4 5° 5' 0,41	63/1 5,5 5° 22' 0,42	63/1 6,9 5° 46' 0,44
Moment of ine J_1 [Ib ft ²] on the	· /	_	_	_	_	_	0,0332	0,0878	0,1851	0,4556	0,8923

Low speed shaft angular backlash

A rough guide for low speed shaft angular backlash is given in the table (the worm being held stationary). Values vary according to design and temperature.

Gear reducers with **controlled** or **reduced backlash** can be supplied on request (see ch. 16), subject to longer delivery times and price addition; choose a **higher** service factor.

1)	At a distance of 3,28 ft from the low speed shaft centre, angular backlash in inches is
	obtained multiplying the table value by $1\ 000\ (1\ rad = 3438)$.

Gear reducer	Angular bac	klash [rad] ¹⁾
0120	min	max
32	0,0030	0,0118
40	0,0025	0,0100
50	0,0020	0,0080
63, 64	0,0018	0,0071
80, 81	0,0016	0,0063
100	0,0013	0,0050
125, 126	0,0011	0,0045
160, 161	0,0010	0,0040
200	0,0008	0,0032
250	0,0007	0,0028

Efficiency m

Efficiency η is derived from the $P_{_{N2}} / P_{_{N1}}$ ratio in the case of gear reducers (ch. 7) and P_2 / P_1 in the case of gearmotors (ch. 9). The values obtained will be valid assuming normal working conditions, worm operating as driving member, proper lubrication, adequate running-in (ch. 15), and a load near to the nominal value.

During the initial working period (about 50 hours) and generally at with $z_1 = 1$; 6% for worms with $z_1 = 2$ and 3% for worms with $z_1 = 3$). **«Static» efficiency** η_s on starting (see table in the preceding section) is much lower than η («starting friction») must be overcome at speed 0); as speed picks up gradually, efficiency will rise correspondingly until the catalogue value is reached.

Inverse efficiency η_{inv} , – produced by the wormwheel as driver – is always less than η_{inv} . It can be calculated approximately as follows:

 $\eta_{s inv} \approx 2 - 1 / \eta_{s}$ $\eta_{inv} \approx 2 - 1 / \eta;$ likewise:

Irreversibility

A worm gear reducer or gearmotor is dynamically irreversible (that is, it ceases to turn the instant the wormshaft receives no further stimulus that would keep the worm itself in rotation e.g. motor torque, inertia from the worm and related fan, motor flywheels, couplings, etc.) when $\eta <$ 0,5 as η_{inv} then drops below 0.

This state becomes necessary wherever there is a need for stopping and holding the load, even without the aid of a brake. Where continuous vibration occurs, dynamic irreversibility may not be obtainable.

A gear reducer or gearmotor is statically irreversible (that is, rotation cannot be imparted by way of the low speed shaft) when $\eta_{s} < 0.5$.

This is a state necessary to keep the load at standstill; taking into account, however, that efficiency can increase with time spent in operation, it would be advisable to assume $\eta_s \leq 0.4$ ($\gamma_m < 5^\circ$)

Where continuous vibration occurs, static irreversibility may not be obtainable.

A gear reducer or gearmotor has low static reversibility (i.e. rotation may be imparted by way of the low speed shaft with high torque and/or vibration) when $0.5 < \eta_s \le 0.6$ (7° 30' $< \gamma_m \le 12^\circ$).

A gear reducer or gearmotor has complete static reversibility (i.e. rotation may be imparted by way of the low speed shaft) when $\eta_{\rm s} > 0,6 \ (\gamma_{\rm m} > 12^{\circ})$

This state is advisable where there is a need for easy start-up of the gear reducer by way of the low speed shaft.

Overloads

Since worm gear pairs are often subject to high static and dynamic overloads by dint of the fact that they are especially suited to bear them, the nedd arises - more so than with other gear pairs - for verifying that such overloads will always remain lower than $\mathbf{M}_{2 \max}$ (ch. 7). Overloads are normally generated when one has:

- starting on full load (especially for high inertias and low transmission ratios), braking, shocks;
- irreversible gear reducers, or gear reducers with low reversibility in which the wormwheel becomes driver due to driven machine inertia;

- applied power higher than that required; other static or dynamic causes. The following general observations on overloads are accompanied by some formulae for carrying out evaluations in certain typical instances. Where no evaluation is possible, install safety devices which will keep values within 2 · M_{N2}.

Starting torque

When starting on full load (especially for high inertias and low transmission ratios) verify that $M_{2 max}$ is equal to or greater than starting torque, by using the following formula:

$$M_2 \text{ start} = \left(\frac{M \text{ start}}{M_N} \cdot M_2 \text{ available} - M_2 \text{ required}\right) \frac{J}{J + J_0 \cdot \eta} + M_2 \text{ required}$$

where

where: M_2 required is torque absorbed by the machine through work and friction; M_2 available is output torque derived from the motor's nominal power rating; J_0 is the moment of inertia (of mass) of the motor; J is the external moment of inertia (of mass) in lb ft² (gear reducers, couplings, driven machine) referred to the motor shaft

NOTE: When seeking to verify that starting torque is sufficiently high for starting, take into account efficiency $\eta_{\rm s}$ when evaluating M_2 available, and starting friction, if any, in evaluating M2 required.

Stopping machines with high kinetic energy (high moments of inertia combined with high speeds) with or without braking (braking applied to wormshaft, or use of brake motor)

Select a gear reducer with static reversibility ($\eta_{\rm s}$ > 0,5); if using a brake motor, verify braking stress with the following formula:

$$\left(\frac{Mf}{\eta_{\text{s inv}}} \cdot i + M_2 \text{ required}\right) \frac{J}{J + J_0/\eta_{\text{s inv}}} - M_2 \text{ required} \leq M_{2 \max}$$

where: Mf is the braking torque setting.

 $\eta_{\text{s inv}}$ is static inverse efficiency (see previous heading); for other symbols see above and ch.1.

Where selection of a statically reversible gear reducer is not possible (i.e. $\eta_s \leq 0.5$) slowing-down should be sufficiently gradual (avoiding application of excessive stress to the unit itself) as to ensure that:

$$\frac{J_2 \cdot \alpha_2}{10} - M_2 \leqslant M_{2\max}$$

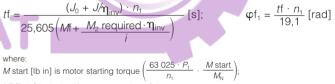
where

where: J_2 [Ib ft²] is the moment of inertia (of mass) of the driven machine referred to the gear reducer's low speed shaft; M_2 [Ib in] is torque absorbed by the machine through work and friction; α_2 [rad/s²] is the low speed shaft's angular deceleration; this may be reduced by fly-wheel fitted to the wormshaft, electric deceleration ramps, lowering of braking torque when harding environments in unon other to the start of the sta braking systems are in use, etc.

 α_2 may be arrived at theorically (within broadly safe limits) or experimentally (by testing against stopping time and distance etc.). If a brake motor is in use, the following formula may be used for a safe evaluation of α_2 .

$$= \frac{10 \cdot Mf}{J_0 \cdot i}$$

in which the motor is presumed without load and subject to its braking torque setting Mf [lb in].


Operation with brake motor

Stating time ta and revolutions of motor φa₁

 α

$$ta = \frac{(J_0 + J_{\eta}) \cdot n_1}{25,605 \left(M \text{ start} - \frac{M_2 \text{ required}}{i \cdot \eta}\right)} [s]; \qquad \varphi a_1 = \frac{ta \cdot n_1}{19,1} [rad]$$

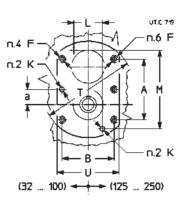
Braking time tf and revolutions of motor of

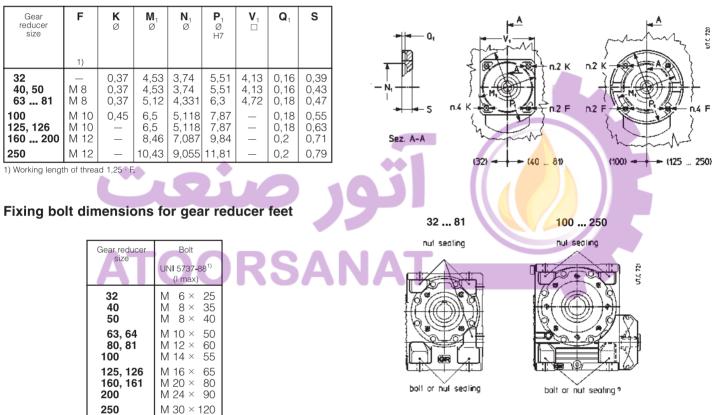
*M*f [lb in] is the braking torque setting of the motor; for other symbols see above and ch. 1.

With the gear reducer run in and operating at normal running temperature — assuming a regular air-gap and ambient humidity and uti-lizing suitable electrical equipment — repetition of the braking action, as affected by variation in temperature of the brake and by the state of wear of friction surface, is approx $\pm 0,1 \cdot \phi f_1$. During warm-up (1 \div 3 h, small through to large sizes), braking

times and distances tend to increase to the point of stabilizing at or around values corresponding to rated catalogue efficiency.

Gear reducers input face

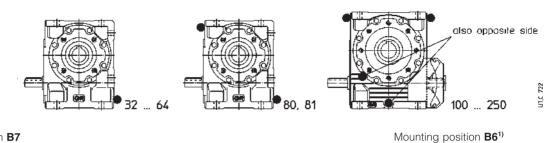

The $\mathbf{R} \mathbf{V}$ gear reducer input face has a machined surface with tapped holes for fitting motor mounting etc.


Gear reducer size	а	A	В	F 1)	K Ø H8 2)	L	М	T Ø	U
32 40, 50 63 81	0,63 0,79 0,98	2,83 3,21 4,17	2,13 2,62 3,15	M 5 M 5 M 6	0,197 0,197 0,236			4,06 4,69 5,87	2,6 3,15 3,78
100 125, 126 160 200 250	1,23 1,57 1,97 2,46	4,92 6,54 8,43 10,79	4,25 5,35 6,61 8,27	M 8 M 8 M 10 M 12	0,315 0,315 0,394 0,472	3,86	 8,50 10,55 13,07	12,28	6,18 7,64

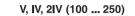
Working length of thread 2 · F.
 Working length of hole 1,6 · K.

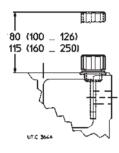
The ${\bf R}\,{\bf IV}$ gear reducer input face has a machined flange with holes for fitting motor mountings etc.

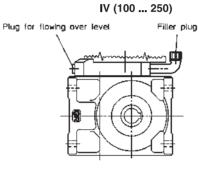
1) Length of thread definites in mm

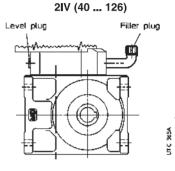


 When tightening bolts at the fan side (sizes 100 ... 250) the fan cowl (which must enclose the fan assembly in order to enhance air-flow) needs to be removed for the purpose. When installing, ensure the cowl clears any surrounding walls by at least half the gear reducer's centre distance.

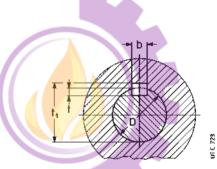



Plug position




Mounting position B7

Shaft end



(100 ... 126)

1) For continuous duty and high input speed an expansion tank is envisaged: consult us.

Shaft e	nd			- I				i
		Shaft er	nd		Parallel key		Keyway	-
) ¹⁾ Ø		E ²⁾	d Ø	$\mathbf{b} imes \mathbf{h} imes \mathbf{l}^{2)}$	b	t	t ₁
0,433 0,551 0,63	j 6 j 6 j 6	0,91 1,18 1,18	(0,79) (0,98)	M 5 M 6 M 6	0,157 x 0,157 x 0,709 (0,472) 0,197 x 0,197 x 0,984 (0,63) 0,197 x 0,197 x 0,984	0,157 0,197 0,197	0,098 0,118 0,118	0,5 0,638 0,717
0,748 0,945 1,102	j 6 j 6 j 6	1,57 1,97 2,36	(1,18) (1,42) (1,65)	M 6 M 8 M 8	0,236 x 0,236 x 1,417 (0,984) 0,315 x 0,276 x 1,772 (0,984) 0,315 x 0,276 x 1,772 (1,417)	0,236 0,315 0,315	0,138 0,157 0,157	0,854 1,071 1,228
1,26 1,496 1,575	k 6 k 6 h 7	3,15 3,15 2,28	(2,28) (2,28)	M 10 M 10 M 10	0,394 x 0,315 x 2,756 (1,969) 0,394 x 0,315 x 2,756 (1,969) 0,472 x 0,315 x 1,969	0,394 0,394 0,472	0,197 0,197 0,197	1,39 1,626 1,705
1,89 2,165 2,362	k 6 m 6 m 6	4,33 4,33 4,13	(3,23) (3,23)	M 12 M 12 M 16	0,551 x 0,354 x 3,543 (2,756) 0,630 x 0,394 x 3,543 (2,756) 0,709 x 0,433 x 3,543	0,551 0,63 0,709	0,217 0,236 0,276	2,039 2,354 2,535
2,756 2,953 3,543	j 6 j 6 j 6	4,13 4,13 5,12		M 16 M 16 M 20	0,787 × 0,472 × 3,543 0,787 × 0,472 × 3,543 0,984 × 0,551 × 4,331	0,787 0,787 0,984	0,295 0,295 0,354	2,949 3,146 3,756
4,331	j 6	6,5		M 24	1,102 x 0,63 x 5,512	1,102	0,394	4,583

Hollow low speed shaft

Hole	Parallel key		Keyway	
D Ø H7	$\mathbf{b} imes \mathbf{h} imes \mathbf{l}^{\star}$	b	t	t ₁
0,748	0,236x 0,236 x 1,417	0,236	0,138	0,854
0,945	0,315x 0,276 x 1,772	0,315	0,157	1,071
1,102	0,315x 0,276 x 2,48	0,315	0,157	1,228
1,26	0,394x 0,315 x 2,756	0,394	0,197	1,39
1,496	0,394x 0,315 x 3,543	0,394	0,197	1,626
1,575	0,472x 0,315 x 3,543	0,472	0,197	1,705
1,89	0,551x 0,354 x 4,331	0,551	0,217	2,039
2,362	0,709x 0,433 x 5,512	0,709	0,276	2,535
2,756	0,787x 0,472 x 7,087	0,787	0,295	2,949
2,953	0,787x 0,472 x 7,087	0,787	0,295	3,146
3,543	0,984x 0,551 x 7,874	0,984	0,354	3,756
4,331	1,102x 0,63 x 9,843	1,102	0,394	4,583

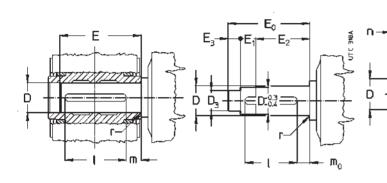
* Recommended length.

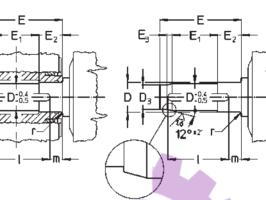
Tolerance valid only for high speed shaft end. Diameter D tolerance for low speed shaft end (ch. 16) is h7 for D ≤ 2,362, j6 for D ≥ 2,756.
 Values in brackets are for short shaft end.

Shaft end of driven machine

Dimensions of shaft end to which the gear reducer's hollow shaft is to be keyed are those recommended in the table on following page and shown in the figures below.

Sizes 32 ... 50: fitting with key (fig. a) or fitting with key and locking rings (fig. b).


Sizes 63 ... 250: fitting with key (fig. c) or fitting with key and locking bush (fig. d); see also ch.15 and 16.


In the case of cylindrical shaft end with only diameter D (fig. a, c), for the seat D on input side, we recommend tolerance h6 or j6 instead of j6 or k6 to facilitate mounting.

Important: the shoulder diameter of the shaft end of the driven machine abutting with the gear reducer must be at least $(1, 18 \div 1, 25) \cdot D$.

32 ... 50

63 ... 250

Gear reducer size	D Ø	D ₃ Ø	E	E ₀	E ₁	E ₂	E ₃	-	m	m _o	n	r
	H7/j6, k6	H7/h6										
32 40 50	0,748 0,945 1,102	0,591 0,748 0,945	2,46 3,01 3,43	2,64 3,19 3,6	0 0,51 0,65	2,32 2,13 2,4	0,31 0,55 0,55	1,42 1,77 2,48	0,83 0,93 0,85	0,77 0,73 0,43		0,06 0,06 0,06
63, 64 80 81	1,26 1,496 1,575	1,063 1,26 1,339	4,33 5,28 5,28		2,24 2,8 2,8	1,34 1,56 1,56	0,39 0,47 0,47	2,76 3,54 3,54	1,1 1,18 1,18	-	0,24 0,24 0,24	0,06 0,06 0,06
100 125, 126 160	1,89 2,362 2,756	1,614 2,047 2,441	6,38 7,6 8,98	-	3,43 4,02 4,88	1,83 2,17 2,48	0,55 0,63 0,63	4,33 5,51 7,09	1,38 1,26 1,38		0,28 0,28 0,31	0,08 0,08 0,08
161 200 250	2,953 3,543 4,331	2,598 3,15 3,858	8,98 10,79 13,03		4,88 5,91 7,09	2,48 2,95 3,54	0,71 0,83 0,98	7,09 7,87 9,84	1,38 1,97 2,17	- - -	0,31 0,35 0,39	0,08 0,12 0,12

15 - Installation and maintencance

General

Be sure that the structure on which gear reducer or gearmotor is fitted is plane, levelled and sufficiently dimensioned in order to assure fitting stability and vibration absence, keeping in mind all transmitted forces due to the masses, to the torque, to the radial and axial loads.

Position the gear reducer or gearmotor so as to allow a free passage of air for cooling both gear reducer and motor (especially at gear reducer and motor fan sides).

Avoid: any obstruction to the air-flow; heat sources near the gear reducer that might affect the temperature of cooling-air and of gear reducer for radiation; insufficient air recycle or any other factor hindering the steady dissipation of heat.

Mount the gear reducer so as not to receive vibrations.

When external loads are present use pins or locking blocks, if necessary.

When fitting gear reducer and machine and/or gear reducer and eventual flange **B5** it is recommended to use **locking adhesives** such as LOCTITE on the fastening screws (also on flange mating surfaces).

For outdoor installation or in a hostile environment protect the gear reducer or gearmotor with anticorrosion paint. Added protection may be afforded by water-repellent grease (especially around the rotary seating of seal rings and the accessible zones of shaft end).

Gear reducers and gearmotors should be protected wherever possible, and by whatever appropriate means, from solar radiation and extremes of weather; weather protection **becomes essential** when high or low speed shafts are vertically disposed, or where the motor is installed vertical with fan uppermost.

For ambient temperatures greater than 104 °F (40 °C) or less than 32 °F (0 °C), consult us.

Before wiring-up the gearmotor, make sure that motor voltage corresponds to input voltage. If the direction of rotation is not as desired, invert two phases at the terminals.

Star-delta starting should be adopted for starting on no load (or with a very small load) and/or when the necessity is for smooth starts, low starting current and limited stresses.

If overloads are imposed for long periods of time, or if shocks or danger of jamming are envisaged, then motor-protections, electronic torque limiters, fluid couplings, safety couplings, control units or other suitable devices should be fitted.

Where duty cycles involve a high number of starts on-load, it is advisable to utilize **thermal probes** (fitted on the wiring) for motor protection; a thermal overload relay is unsuitable since its threshold must be set higher than the motor's nominal current rating.

Use varistors to limit voltage peaks due to contactors

Caution! Bearing life, good shaft and coupling running depend on alignment precision between the shafts. Carefully align the gear reducer with the motor and the driven machine (with the aid of shims if need be), interposing flexible couplings whenever possible.

Whenever a leakage of lubricant could cause heavy damages, increase the frequency of inspections and/or envisage appropriate control devices (e.g.: remote oil level gauge, lubricant for food industry, etc.).

In polluting surroundings, take suitable precautions against lubricant contamination through seal rings or other.

Gear reducer or gearmotor should not be put into service before it has been incorporated on a machine which is conform to 98/37/EC directive.

For brake or special motors, consult us for specific information.

Fitting of components to shaft ends

It is recommended that the bore of parts keyed to shaft ends is machined to H7 tolerance; G7 is permissible for high speed shaft ends $D \ge 2,17$ in, provided that load is uniform and light; for low speed shaft ends, tolerance must be **K7** when load is not uniform and light. Other details are given in the «Shaft end» table (ch. 14).

Before mounting, clean mating surfaces thoroughly and lubricate against seizure and fretting corrosion.

Installing and removal operations should be carried out with **pullers** and **jacking screws** using the tapped hole at the shaft butt-end; for H7/m6 and K7/j6 fits it is advisable that the part to be keyed is preheated to a temperature of $176 \div 212$ °F (80 °C $\div 100$ °C).

Hollow low speed shaft

For the shaft end of machines where the hollow shaft of the gear reducer is to be keyed, j6 or k6 tolerances are recommended (according to requirements). Other details are given under «Shaft end» and «Shaft end of driven machine» (ch. 14).

In order to have an easier installing and removing of gear reducer sizes 63 ... 250 (with circlip groove) proceed as per the drawings a, b, respectively.

The system illustrated in the fig. c, d is good for axial fastening.

For sizes 63 ... 250, when shaft end of driven machine has no shoulder a spacer may be located between the circlip and the shaft end itself (as in the lower half of the fig. d).

The use of **locking rings** (sizes 32 ...50, fig. e), or of **locking bush** (sizes 63 ... 250, fig. f) will permit easier and more accurate installing and removing and to eliminate backlash between key and keyway.

The locking rings or the locking bush are fitted after mounting, the shaft end of the driven machine must be as prescribed at ch. 14. Do not use molybdenum bisulphide or equivalent lubricant for the lubrication of the parts in contact. We recommend the use of a **locking adhesive** such as LOCTITE 601. For vertical ceiling-type mounting, contact us.

A **washer** for installing, removing (excluding sizes 32 ... 50) and axial fastening of gear reducer (ch. 15) with or without **locking rings** or **locking bush** (dimensions shown in the table) and a **protection cap** for the hollow low speed shaft can be supplied on request. Parts in contact with the circlip must have sharp edges.

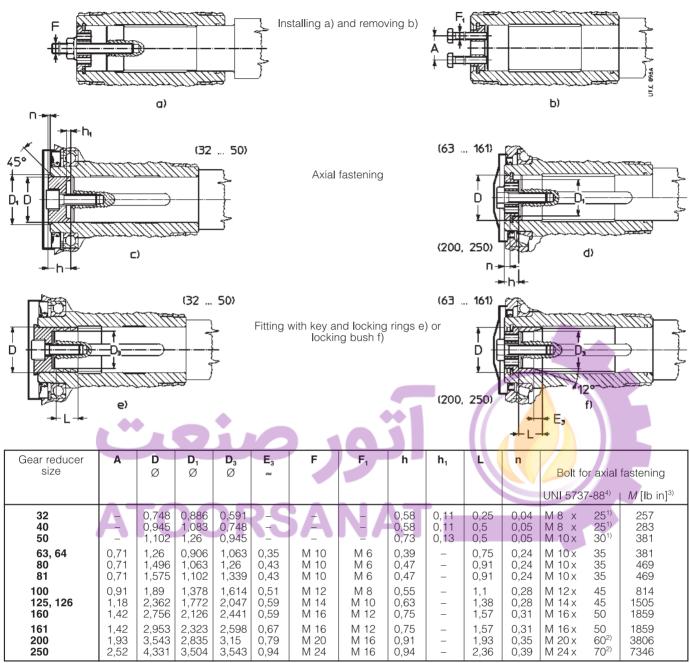
Lubrication

Gear pairs and bearings on worm are oil-bath lubricated; sizes 200 and 250 mounting position B7 with worm speed > 710 rpm have upper bearings on worm lubricated by a pump inside the casing. Other bearings are likewise lubricated by oil-bath, or splashed, with the exception of upper-bearings on wormwheel in mounting position V5 and V6, where life-grease lubrication is employed (NILOS ring in sizes 161 ... 250).

All sizes are envisaged with synthetic oil lubrication.

Synthetic oil can withstand temperature up to **203** ÷ **230** °F (**95** ÷ **110** °C). **Sizes 32 ... 81**: gear reducers are supplied filled with synthetic oil (AGIP Blasia S 320, KLÜBER Klübersynth GH 6-320, MOBIL Glygoyle HE 320, SHELL Tivela WB/SD; when worm speed \leq 280 rpm KLÜBER Klübersynth GH 6-680), providing «**long life**» lubrication, assuming pollution-free surroundings; quantities as indicated in ch. 8 and 10, and on the lubrication plate. Ambient temperature 32 ÷ 104 °F (0 ÷ 40 °C) with peaks of - 4 °F (-20 °C) and +122 °F (+50 °C).

Sizes 100 ... 250: gear reducers are supplied without oil; before putting into service, fill to the specified level with synthetic oil (AGIP Blasia S, ARAL Degol GS, BP-Energol SG-XP, MOBIL Glygoy-Ie HE, SHELL Tivela Oil, KLÜBER Klübersynth GH ...) having the ISO viscosity-grade given in the table. Under normal conditions, the first speed range is for train of gears V, the second IV and V, (low speed), and the third combined units and V, IV, 2IV (low speed). Once the running-in period has been completed (see below) an oil change accompanied by a through clean-out is advisable for worm speed > 180 rpm).


Combined gear reducer and gearmotor units: lubrication remains independent, thus data relative to each single gear reducer hold good. An overall guide to **oil-change interval**, is given in the table, and assumes pollution-free surroundings. Where heavy overloads are present, halve the value.

Oil temperature [°F (°C)]	Oil-change interaval [h] - Synthetic oil
≤ 149 (65) 149 ÷ 176 (65 ÷ 80) 176 ÷ 203 (80 ÷ 95)	18 000 12 500 9 000
203 ÷ 230 (95 ÷ 110)	6 300

Never mix different makes of synthetic oil; if oil-change involves switching to a type different from that used hitherto, then give the gear reducer a thorough clean-out.

15 - Installation and maintenance

1) UNI 5931-84. 2) For locking bush: M 20 × 65 and M 24 × 80 UNI 5737-88 class 10.9. 3) Tightening torque for locking rings or bush. 4) Length of thread definites in mm.

Mean kinematic viscosity [cSt] at 104 °F (40 °C).

Worm speed rpm		Ambient temperature	$e 32 \div 104 {}^{\circ}F^{2)} (0 \div 4)$	10 °C) ²⁾ – Synthetic oil	
ipin			Gear reducer size		
	100	125	161	200,	250
		B3 ¹⁾ , V5 , V6	B6, B7, B8	B3 ¹⁾ , V5 , V6	B6, B7, B8
2 800 ÷ 1 400 ³⁾	320	320	220	22	0
1 400 ÷ 710 ³⁾	320	32	20	320	220
710 ÷ 355 ³⁾	460	46	60	460	320
355 ÷ 180 ³⁾	680	680	460	46	0
< 180	680	68	30	68	0

1) Not stated in name plate. 2) Peaks of 50 °F (10 °C) above and 50 °F (10 °C) (68 °F (20 °C) for \leq 460 cSt) below the ambient temperature range are acceptable. 3) For these speeds we advise to replace oil after running-in.

15 - Installation and maintenance

Running-in: a period of about $400 \div 1600$ h is advisable, by which time the gear pair will have reached maximum efficiency (ch. 14); oil temperature during this period is likely to reach higher levels than would normally be the case.

Seal rings: duration depends on several factors such as dragging speed, temperature, ambient conditions, etc.; as a rough guide; it can vary from 3 150 to 25 000 h.

Warning: for gear reducers sizes 100 ... 250, before unscrewing the filler plug with valve (symbol -) wait until the unit has cooled and then open with caution.

Motor replacement

As all gearmotors are fitted with **standard** motors, motor replacement in case of breakdown is extremely easy. Simply observe the following instructions:

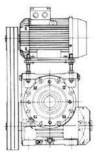
- be sure that the mating surfaces are machined under accuracy rating (UNEL 13501-69; DIN 42955);
- clean surfaces to be fitted, thoroughly;
- check and, if necessary, lower the parallel key so as to leave a clearance of 0,00394 ÷ 0,0079 in between its tip and the bottom of the keyway; if shaft keyway is without end, lock the key with a pin;

for MR V:

- check that the fit-tolerance (push-fit) between holes hole-shaft end is G7/j6 for $D \le 1,102$ in, F7/k6 for $D \ge 1,5$ in;
- Iubricate surfaces to be fitted against fretting corrosion;

for MR IV, 2IV:

- check that the fit-tolerance (standard locking) between holes and shaft end is K6/j6 for D ≤ 1,102 in, and J6/k6 for D ≥ 1,5 in; key length should be at least 0,9 pinion width;
- ensure that motor bearings and overhangs (dimension S) are as shown in the table;


Shaft-mounting arrangements

The strength and shape of the casing offer: **advantageous** possibilities for shaft mounting even – for instance – in the case of gearmotor with belt drive.

A few shaft mounting arrangements are shown here with the relative details as to selection, and installation.

In ch. 16 the shaft-mounting arrangements which **can be supplied** are shown.

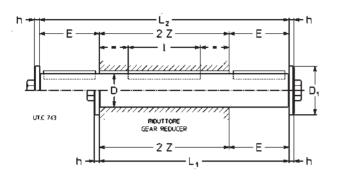
IMPORTANT. When shaft mounted, the gearmotor must be supported both axially and radially by the shaft end of the driven machine, as well as anchored against rotation only, by means of a reaction having freedom of axial movement and sufficient clearance in its couplings to permit minor oscillations – always in evidence – without

provoking dangerous overloads on the actual gearmotor. Pivots and components subjected to sliding have to be properly lubricated; we recommend the use of a locking adhesive such as LOCTITE 601 when fitting the bolts.

gear reducer

Motor size	Min. dynamic loa	d capacity [daN]	Max dimension 'S'
	Front	Rear	inch.
63	1 012	753	0,6
71	1 416	1 068	0,7
80	2 023	1 506	0,8
90	2 967	2 248	0,9
100	4 496	3 372	1
112	5 620	4 271	1,1
132	7 981	5 957	1,3
160	10 678	7 531	1,5
180	14 163	10 116	1,6
200	17 985	12 589	1,8
225	22 482	15 962	1,9

— mount the spacer (with rubber cement check that there is a grounded cylindrical part of at least 0,06 in) between keyway and motor shaft shoulder and the pinion (the latter to be preheated to a temperature of 176 ÷ 212 °F (80 ÷ 100 °C)) on the motor, locking the assembly with either a bolt to the shaft butt-end, or a stop collar;


 - lubricate the pinion toothing, and the seal ring and its rotary seating with grease, assembling with extreme care.

16 - Accessories and non-standard designs

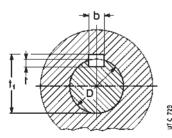
Low speed shafts

Supplementary description when ordering by **designation: standard**, or **double extension low speed shaft**.

Gear reducer	D Ø	E	D ₁ Ø	h	L ₁	L ₂	I	2 Z	E	Bolt		Ma It	
size										JNI 37-8	8	Standard	Double ext.
32 40 50	0,748 h 7 0,945 h 7 1,102 h 7	1,42	1,102 1,378 1,378		4,25 5,04 5,83	5,43 6,46 7,48	1,42 1,77 2,48	3,07 3,62 4,17	M 6 M 8 M 8	X X X	20 25 25	0,7 1,3 1,8	0,9 1,5 2,2
63, 64 80 81	1,26 h 7 1,496 h 7 1,575 h 7	2,28	1,85 1,85 1,85	0,2 0,2 0,2	7,24 8,19 8,19	9,53 10,47 10,47	2,76 3,54 3,54	4,96 5,91 5,91	M 10 M 10 M 10	X X X	30 30 30	2,6 4,2 4,6	3,3 5,3 6
100 125, 126 160	1,89 h7 2,362 h7 2,756 j6	4,13	2,244 3,228 3,228	0,31	10,31 12,48 13,98	13,54 16,61 18,11	4,33 5,51 7,09	7,09 8,35 9,84	M 12 M 16 M 16	X X X	40 45 45	8,2 15,4 24	10,8 20,7 31
161 200 250	2,953 j6 3,543 j6 4,331 j6	5,12	3,228 4,016 5,315	0,39	13,98 16,93 20,67	18,11 22,05 27,17	7,09 7,87 9,84	9,84 11,81 14,17	M 16 M 20 M 24	X X X	45 60 60	28 46 86	35 62 112

The shoulder outer diameter of the part, or of spacer abutting with the gear reducer must be (1.25 \div 1.4) \cdot D.

1) Length of thread definites in mm.


Oversized hollow low speed shaft

The gear reducers and gearmotors sizes 32 ... 64 and 100 can be supplied with oversized hollow low speed shaft; dimensions are according to table on the left.

		TOC			
Gear reducer size	Ø	Parallel key	Keyway		A
	H7	b x h x l*	b	t	t ₁
32 40 50	20 25 30	$\begin{array}{ccc} 6\times 6\times & 36\\ 8\times 7\times & 45\\ 8\times 7\times & 63 \end{array}$	6 8 8	4 ¹⁾ 4,5 ¹⁾ 5 ¹⁾	22,2 ¹⁾ 27,7 ¹⁾ 32,2 ¹⁾
63 ²⁾ , 64 ²⁾ 100	35 50	$\begin{array}{c} 10\times8\times 90\\ 14\times9\times110 \end{array}$	10 14	6 ¹⁾ 5,5 ¹⁾	37,3 ¹⁾ 53,8

* Recommended length.

Not unified values.
 Without circlip groove.

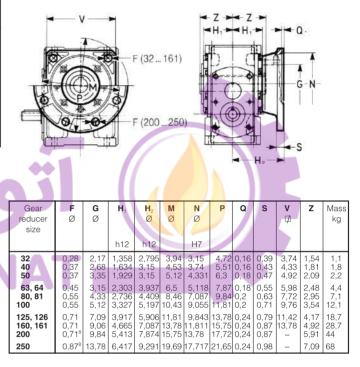


Supplementary description when ordering by $\ensuremath{\textit{designation: oversized hollow low speed shaft}}.$

Solid low speed shaft (size 250)

In order to permit the high radial loads given in the catalogue (250 bis), the gear reducer size 250 can be supplied with solid low speed shaft and strengthened bearings. Dimensions remain unchanged (missing the washer on shaft end).

Supplementary description when ordering by designation: solid low speed shaft pos. 1 or 2 or double extension.



Flange

All gear reducers and gearmotors can be supplied with ${\bf B5}$ flange having clearance holes and spigot «recess».

Locking adhesives such as LOCTITE are recommended both around threads and on mating surfaces.

Supplementary description when ordering by designation: flange B5.

Strengthened low speed shaft bearings

Gear reducers and gearmotors sizes 63 ... 126 can be supplied with taper roller bearings supporting the low speed shaft, allowing increased radial and/or axial loads. Values for sizes 100 ... 126 are given in ch. 13, other values, consult us.

Supplementary description when ordering by designation: strengthened low speed shaft bearings.

Strengthened high speed shaft bearings

Gear reducers R IV sizes 80 ... 126 with $i_N \leq 160$ can be supplied with cylindrical roller bearings supporting the high speed shaft allowing increased radial loads, values **x 1,6** for sizes 80 ... 100, **x 1,4** for sizes 125 and 126 (ch. 12); this design is standard for sizes 160 ... 250.

Supplementary description when ordering by **designation**: **streng-thened high speed shaft bearing**.

16 - Accessories and non-standard designs

Controlled or reduced backlash

Gear reducers and gearmotors with worm gear pair controlled or reduced backlash.

Values are 1/2 (controlled backlash) or 1/4 (reduced backlash) those stated on ch. 14; reduced backlash designed not possible for R V and MR V with input speed $n_1 > 1400$ rpm.

Supplementary description when ordering by designation: controlled backlash or reduced backlash.

Square flange for servomotors

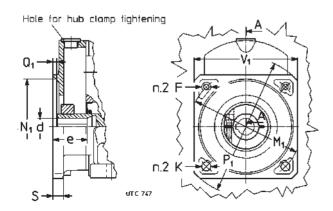
MR V and MR IV 32 ... 81 gearmotors can be supplied with motor mounting flange when coupling with servomotors and, only for MR V, with hub clamp for fitting with key between gear reducer worm shaft and motor shaft; for MR IV first reduction pinion keyed directly onto motor shaft end permits to avoid backlash and consequently shock on the same keying.

Considering that servomotors do not have any standardised dimen-sion, when selecting verify all coupling dimensions stated in the table; d dimension determines IEC stardardised motor size in catalogue gearmotor designation (see ch. 3 and 9).

For other gearmotor dimensions see ch. 10.

In case of motor removing, first loosen the hub clamp.

For the verifications of keying, motor mounting flange and motor bearing resistance according to motor performances, speed, mass and length, consult us.


Controlled or reduced backlash design can be supplied (see ch.14 and page 61).

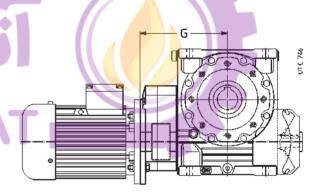
Servogearmotors complete with synchronous «brushless» and asynchronous «vector» motors designed for automation: see cat. SR.

Supplementary description when ordering by designation: square **flange ... – ...** (state V_1 – d dimension; e.g.: 5,71 - 0,94).

Gear reducer size	V ₁	F	к Ø	M ₁ Ø	N ₁ Ø H7	P ₁ Ø	Q	S	d Ø	e	•
	0.54	MC	0.07	2.04	0.15	4 70	0.10	0.07	0.40	0.01	
32	3,54	M6	0,27	3,94	3,15	4,72	0,16	0,37	0,43	0,91	-
40, 50 2)	3,54	M6	-	3,94	3,15	4,72	0,16	0,35	0,43 0,55 0,75	0,91 1,18 1,18	
	4,13	M8	0,37	4,52	3,74	5,51	0,16	0,43	0,55 0,75	1,18 1,57	
	4,72		0,374	5,12	4,33	6,3	0,18	0,43	0,75	1,57	
63 81	4,13	M84	-	4,53	3,74	5,51	0,16	0,39	0,55 0,75	1,18 1,57	
3)	4,72	M8	0,37	5,12	4,33	6,3	0,18	0,47	0,75 0,94	1,57 1,97	
	5,71	-	0,45 ⁴	6,5	5,12	7,68	0,18	0,47	0,94 1,1	1,97 2,36	

1) Working length of thread 1,5 \cdot F. 2) For size 40, d = 0,43 and 0,55 only. 3) For size 63 and 64 with V₁ = 5,71 d = 0,94 only.

Examples of worm servogearmotors with synchronous «brushless» and asynchronous «vector» servomotor of cat. SR


Gearmotor with interposed coupling

Gearmotors MR V 160 ... 250 can be supplied with a coupling al ready fitted between gear reducer and motor. This may be a steel/plastic serrated coupling or a flexible coupling.

This kind of gearmotor utilizes UO2B gear reducer design (with reduced wormshaft end) to which a flange, a spacer and then the coupling are added, in addition to the motor itself.

Supplementary description when ordering by **designation** (the same as for gearmotors in ch. 9): **gearmotor with coupling** or **with flexible** coupling.

	G	
gear reducer	motor	ŭ
160, 161	180	12,99
200	180, 200	14,76
250	180, 200 225, 250 B5R	17,32 18,50

Hollow low speed shaft washer with locking rings or bush

All gear reducers and gearmotors can be supplied with washer, circlip (excluding sizes 32 ... 50), locking rings (sizes 32 ... 50) or locking bush (sizes 63 ... 250), bolt for axial fastening and protection cap (ch. 15).

Supplementary description when ordering by designation: hollow low speed shaft washer with locking rings or bush.

Hollow low speed shaft protection

Gear reducers and gearmotors, sizes 32 ... 161, can be supplied with only the protection cap for the area not utilized by the hollow low speed shaft (ch. 15).

Supplementary description when ordering by designation: hollow low speed shaft protection.

16 - Accessories and non-standard designs

Miscellaneous

- Expansion tank for continuous duty and high speed running of gear reducers and gearmotors IV 100 ... 250 and 2IV 100 ... 126 mounting position B6.
- Gear reducers and gearmotors sizes 100 ... 250 supplied filled with synthetic oil.
- Gearmotors with:
 - HFV (also single-phase) brake motor with d.c. safety and/or parking brake (sizes 63 ... 132) having overall dimensions nearly the same of a standard motor and braking torque $M_{\rm f} \ge M_{\rm N}$, maximum economy;

- motor featuring: d.c. supply; single-phase; explosion-proof; with second shaft end; with non-standard protection, voltage and frequency; provided with devices against overloads and overheating;
- motor without fan cooled by natural convection (size 63 ... 112); design for textile industry.
- Gear reducers and gearmotors with mechanical torque limiter on output shaft (see fig.1 on following page), gear reducer sizes 32 ... 160 (excluding size 81).

Gear reducer design with mechanical **friction** type torque limiter (friction surfaces without asbestos), compact and with high transmissible torque — up to **26 250** Ib in — and top quality standards. It protects the drive from accidental overloads by excluding the effect of intertia loads transmitted from up-line masses and, also if the gear reducer is irreversible (the torque limiter being mounted on the output shaft), inertia loads transmitted from down-line masses. When the transmitted torque tends to exceed the setting value the drive «slips» although it **remains** engaged with torque equal to the limiter setting value; slipping stops as soon as the load returns will continue normal operation (after decelating or stopping) without requiring reset procedures.

The system, as the unit is mounted externally to the gear pair, will not after if the direction of rotation changes and it does not affect the rigidity and meshing precision between worm and worm wheel (this is important to ensure the correct transmission of torque and the limitation of undue backlash between teeth through time). The system also permits **shaft mounting** with the limiter mounted **externally** (easily accessible) or in the **intermediate** position (better safety protection). It can be interposed, in the **combined units**, between initial worm gear reducer and final worm gear reducer, sizes **100 ... 250**.

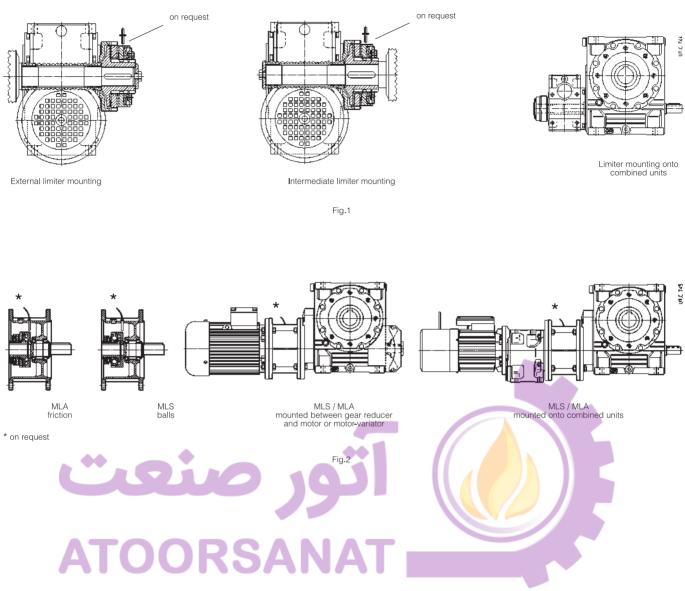
On request slide detector. For more details see specific literature.

— MLA and MLS unit, mechanical torque limiter on input shaft (see fig.2 on following page), motor sizes 80 ... 200 (180 for MLS). Mechanical torque limiter unit to be interposed between gear reducer and B5 mounting position motor standardized to IEC or (wide belt or planetary motor-variator) or, in combined units, between the initial gear reducer and the final worm gear reducer, sizes 50 ... 250.

Axially ultra-compact design: excellent load bearing with life lubricated double row angular contact ball bearings (motor size \leq 112) or «O» disposed taper roller bearings.

The unit protects the drive from accidental overloads by excluding inertia loads trasmitted from up-line masses and if the gear reducer is reversible (the torque limiter being on the input shaft), inertia loads transmitted from down-line masses.

LA unit is friction type (friction surfaces without asbestos). When the transmitted torque tends to exceed the setting, the drive «slips», although it remains engaged and transmits torque equal to the limiter setting value; slipping stops as soon as the load returns to normal; in the case of very brief overloads the driven machine will continue normal operation (after decelerating or stopping) without requiring reset procedures.


LS unit is ball type. When the transmitted torque tends to exceed the setting, the drive is «disengaged» so **it does not remain** connected. The driven machine will therefore stop.

LA and LS units are mechanically interchangeable. On request slide detector. For more details see **specific literature**.

- Hollow low speed shaft with acme-type thread.
- Gearmotors with interposed compact clutch-brake or fluid coupling/brake unit.
- Semi-flexible and hydrodynamic couplings.
- Special paint options:
- external, single-compound: antirust zinc primer plus blue RAL 5010 DIN 1843 synthetic paint (excluding sizes 32 ... 81);
 external, dual-compound: dual-compound epoxy-polyamidic antirust primer plus dual-compound blue RAL 5010 DIN 1843 polyurethane enamel (excluding sizes 32 ... 81).
- Special seal rings; double seal (excluding sizes 32 ... 50).
- − For high transmission ratios combined units can be also obtained with initial gearmotor **MR IV** with final gear reducer size \leq 81 and with initial gearmotor **MR 2IV** for final gear reducer size \geq 100.

16 - Accessories and non-standard design

Australia

Rossi Gearmotors Australia Ptv. 1 td. AU - Perth WA Phone +61 8 94557399 fax +61 8 94557299 e-mail: info.australia@rossi-group.com www.rossigearmotors.com.au

Benelux Habasit Netherlands B.V. NL - Nijkerk Phone +31 33 247 20 30 Fax: +31 33 246 15 99 e-mail: netherlands@habasit.com www.rossi-group.com

Canada

Rossi Gearmotors Rossi Gearmotors Division of Habasit Canada Limited CA - Oakville, Ontario Phone +1 905 8274 131 fax +1 905 8252 612 e-mail: info.canada@habasit.com www.rossi-group.com

China Rossi Gearmotors China P.T.I. CN - Shanghai Phone +86 21 3350 5345 fax +86 21 3350 6177 e-mail: info.china@rossi-group.com www.rossigearmotors.cn

Denmark

Habasit AB DK - 3400 Hillerød Phone +45 48 28 80 87 fax +45 48 28 80 89 e-mail: info@habasit.se www.habasit.dk

Finland Habasit AB S - 430 63 Hindås Phone +46 301 226 00 fax +46 301 226 01 e-mail: info@habasit.se www.habasit.se

France Rossi Motoréducteurs SARL

F - Saint Priest Phone +33 472 47 79 30 fax +33 472 47 79 49 e-mail: info.france@rossi-group.com www.rossimotoreducteurs.fr

Germany Habasit GmbH

D - Eppertshausen Phone +49 6071 / 969 - 0 fax +49 6071 / 969 -150 e-mail: rossi.germany@habasit.com www.habasit.de

Iceland Habasit AB

S - 430 63 Hindås Phone +46 301 226 00 fax +46 301 226 01 e-mail: info@habasit.se www.habasit.se

India Rossi Gearmotors Pvt. Ltd Rossi Gearmotors Pvt. Etu. IN - Coimbatore Phone +91 422 2361 484 fax +91 422 2361 485 e-mail: info.indi@rossi-group.com www.rossi-group.com

Mexico Rossi Gearmotors A Division of Habasit America

US - Suwanee Phone +1 800 931 2044 fax +1 678 288 3658 e-mail: rossi info@us habasit.com www.habasitamerica.com

New Zealand Rossi Gearmotors New Zealand Ltd. NZ - Auckland Phone +61 9 263 4551 fax +61 9 263 4557 e-mail: info.nz@rossi-group.com www.rossigearmotors.com.au

Norway Habasit Norge A/S

N - 1001 OSLO Phone +47 81 558 458 fax +47 22 301 057 e-mail: info@habasit.se www.habasit.no

Poland Rossi Polska Sp. z o.o. ul. Ciepla 15/21, 50-524 Wroclaw Phone: +48 500 418 505 e-mail: info.poland@rossi-group.com www.rossi-group.com

Portugal Rossi Motorreductores S.L. E - Viladecans (Barcelona) Phone +34 93 6377248 fax +34 93 6377404 e-mail: info.spain@rossi-group.com www.rossimotorreductores.es

Spain Rossi Motorreductores S.L

E - Viladecans (Barcelona) Phone +34 93 6377248 fax +34 93 6377404 e-mail: info.spain@rossi-group.com www.rossimotorreductores.e

Sweden

Habasit AB S - 430 63 Hindås Phone +46 301 226 00 fax +46 301 226 01 e-mail: info@habasit.se www.habasit.se

Taiwan Habasit Rossi (Taiwan) LTD. TW - Taipei Hsien

Phone +886 2 22670538 fax +886 2 22670578 e-mail: info.hea@habasit.com www.rossi-group.com

United Kingdom Habasit Rossi Limited

UK - Coventry Phone +44 2476 644646 fax +44 2476 644535 e-mail: info.uk@habasitrossi.com www.habasitrossi.co.uk

United States

Rossi Gearmotors A Division of Habasit America US - Suwanee US - Suwanee Phone +1 800 931 2044 fax +1 678 288 3658 e-mail: rossi.info@us.habasit.com www.habasitamerica.com

The Customer is responsible for the correct selection and application of these products in consideration of its industrial and/or commercial needs, unless the product has been recommended by a technically qualified and authorized employee, who has been duly informed about the customer's application requirements.

In this case, all the necessary data required for the product selection shall be accurately communicated in writing by the Customer, stated on the customers order, and oficially confirmed. The Customer is always responsible for the safety of product applications. Every care has been taken in the development of the catalog to ensure the accuracy of the information contained in this publication, however no responsibility may be accepted for any errors, omissions, or obsolete data. Due to constant advancements in technology, this publication will be subject to modifications. It is the Customer's responsibility to make accurate product selections, excluding different agreements duly legalized in writing and undersigned by the involved Parties.

Rossi Gearmotors

A Division of Habasit America US - Suwanee Phone +1 800 931 2044 fax +1 678 288 3658 e-mail: rossi.info@us.habasit.com www.habasitamerica.com

Registered trademarks Copyright Rossi S.p.A. Subject to alterations Printed in Italy Publication data 4005BRO.AWO-en1011USA

Product liability, application considerations